scholarly journals GPS Precipitable Water as a Diagnostic of the North American Monsoon in California and Nevada

2013 ◽  
Vol 26 (4) ◽  
pp. 1432-1444 ◽  
Author(s):  
James D. Means

Abstract Precipitable water derived from archived global positioning system (GPS) zenith travel-time delays is used to describe the seasonal and interannual variation of the North American monsoon in California and Nevada. A 3-hourly dataset of precipitable water from 2003 to 2009, for over 500 sites in California and Nevada using temperature and pressure interpolated from the North American Regional Reanalysis (NARR), is constructed to study the temporal and spatial extent of the North American monsoon in the desert regions of California and Nevada. The statistical distribution of precipitable water values is shown to delineate the region that is most often affected by the monsoonal influence. A normalized precipitable water index is employed to indicate when the monsoon starts and stops and to investigate spatial variability. The GPS network provides much higher spatial resolution than other meteorological networks using surface-based methods, such as dewpoint criteria and rainfall, and is seen to contain comparable ability in capturing temporal variations. This dataset reveals the northwestward propagation of the monsoon onset both synoptically and seasonally. The GPS observations indicate that in the mean the decay of the monsoon is less well defined than the onset. Seven-year reanalysis 700-mb geopotential height composites for the monsoon onset and 3 days prior indicate that the onset of the monsoon is associated with a shift in the synoptic pattern characterized by upper-level high pressure building from the east and offshore troughing retreating to the northwest.

2013 ◽  
Vol 30 (3) ◽  
pp. 485-495 ◽  
Author(s):  
James D. Means ◽  
Daniel Cayan

Abstract Precipitable water or integrated water vapor can be obtained from zenith travel-time delays from global positioning system (GPS) signals if the atmospheric pressure and temperature at the GPS site is known. There have been more than 10 000 GPS receivers deployed as part of geophysics research programs around the world; but, unfortunately, most of these receivers do not have collocated barometers. This paper describes a new technique to use North American Regional Reanalysis pressure, temperature, and geopotential height data to calculate station pressures and surface temperature at the GPS sites. This enables precipitable water to be calculated at those sites using archived zenith delays. The technique has been evaluated by calculating altimeter readings at aviation routine weather report (METAR) sites and comparing them with reported altimeter readings. Additionally, the precipitable water values calculated using this method have been found to agree with SuomiNet GPS precipitable water, with RMS differences of 2 mm or less, and are also generally in agreement with radiosonde measurements of precipitable water. Applications of this technique are shown and are explored for different synoptic situations, including atmospheric-river-type baroclinic storms and the North American monsoon.


2009 ◽  
Vol 22 (15) ◽  
pp. 4213-4227 ◽  
Author(s):  
Stephen W. Bieda ◽  
Christopher L. Castro ◽  
Steven L. Mullen ◽  
Andrew C. Comrie ◽  
Erik Pytlak

Abstract Relationships between transient upper-tropospheric troughs and warm season convective activity over the southwest United States and northern Mexico are explored. Analysis of geopotential height and vorticity fields from the North American Regional Reanalysis and cloud-to-ground lightning data indicates that the passage of mobile inverted troughs (IVs) significantly enhances convection when it coincides with the peak diurnal cycle (1800–0900 UTC) over the North American monsoon (NAM) region. The preferred tracks of IVs during early summer are related to the dominant modes of Pacific sea surface temperature (SST) variability. When La Niña–like (El Niño–like) conditions prevail in the tropical Pacific and the eastern North Pacific has a horseshoe-shaped negative (positive) SST anomaly, IVs preferentially track farther north (south) and are slightly (typically one IV) more (less) numerous. These results point to the important role that synoptic-scale disturbances play in modulating the diurnal cycle of precipitation over the NAM region and the significant impact that the statistically supported low-frequency Pacific SST anomalies exert on the occurrence and track of these synoptic transients.


2007 ◽  
Vol 135 (6) ◽  
pp. 2168-2184 ◽  
Author(s):  
Gregory L. West ◽  
W. James Steenburgh ◽  
William Y. Y. Cheng

Abstract Spurious grid-scale precipitation (SGSP) occurs in many mesoscale numerical weather prediction models when the simulated atmosphere becomes convectively unstable and the convective parameterization fails to relieve the instability. Case studies presented in this paper illustrate that SGSP events are also found in the North American Regional Reanalysis (NARR) and are accompanied by excessive maxima in grid-scale precipitation, vertical velocity, moisture variables (e.g., relative humidity and precipitable water), mid- and upper-level equivalent potential temperature, and mid- and upper-level absolute vorticity. SGSP events in environments favorable for high-based convection can also feature low-level cold pools and sea level pressure maxima. Prior to 2003, retrospectively generated NARR analyses feature an average of approximately 370 SGSP events annually. Beginning in 2003, however, NARR analyses are generated in near–real time by the Regional Climate Data Assimilation System (R-CDAS), which is identical to the retrospective NARR analysis system except for the input precipitation and ice cover datasets. Analyses produced by the R-CDAS feature a substantially larger number of SGSP events with more than 4000 occurring in the original 2003 analyses. An oceanic precipitation data processing error, which resulted in a reprocessing of NARR analyses from 2003 to 2005, only partially explains this increase since the reprocessed analyses still produce approximately 2000 SGSP events annually. These results suggest that many NARR SGSP events are not produced by shortcomings in the underlying Eta Model, but by the specification of anomalous latent heating when there is a strong mismatch between modeled and assimilated precipitation. NARR users should ensure that they are using the reprocessed NARR analyses from 2003 to 2005 and consider the possible influence of SGSP on their findings, particularly after the transition to the R-CDAS.


2004 ◽  
Vol 17 (20) ◽  
pp. 3892-3906 ◽  
Author(s):  
J. Xu ◽  
X. Gao ◽  
J. Shuttleworth ◽  
S. Sorooshian ◽  
E. Small

2010 ◽  
Vol 138 (9) ◽  
pp. 3540-3555 ◽  
Author(s):  
Zachary O. Finch ◽  
Richard H. Johnson

Abstract Upper-level inverted troughs (IVs) associated with midlatitude breaking Rossby waves or tropical upper-troposphere troughs (TUTTs) have been identified as important contributors to the variability of rainfall in the North American monsoon (NAM) region. However, little attention has been given to the dynamics of these systems owing to the sparse observational network over the NAM region. High temporal and spatial observations taken during the 2004 North American Monsoon Experiment (NAME) are utilized to analyze a significant IV that passed over northwestern Mexico from 10 to 13 July 2004. The Colorado State University gridded dataset, which is independent of model analysis over land, is the primary data source used in this study. Results show that the 10–13 July IV disturbance was characterized by a warm anomaly around 100 hPa and a cold anomaly that extended from 200 to 700 hPa. The strongest cyclonic circulation was in the upper levels around 200 hPa. Quasigeostrophic (QG) diagnostics indicate that the upper-level low forced weak subsidence (weak rising motion) to the west (east) of its center. Net downward motion to the west was a result of the Laplacian of thermal advection (forcing subsidence) outweighing differential vorticity advection (forcing weak upward motion). Despite the QG forcing of downward motion west of the upper-level IV, enhanced convection occurred west of the IV center along the western slopes of the Sierra Madre Occidental (SMO). This seemingly contradictory behavior can be explained by noting that the upper-level IV induced a midlevel cyclonic circulation, with northeasterly (southeasterly) midlevel flow to the west (east) of its center. Increased mesoscale organization of convection along the SMO foothills was found to be collocated with IV-enhanced northeasterly midlevel flow and anomalous northeasterly shear on the western (leading) flank of the system. It is proposed that the upper-level IV increased the SMO-perpendicular midlevel flow as well as the wind shear, thereby creating an environment favorable for convective storms to grow upscale as they moved off the high terrain.


2016 ◽  
Vol 97 (11) ◽  
pp. 2103-2115 ◽  
Author(s):  
Yolande L. Serra ◽  
David K. Adams ◽  
Carlos Minjarez-Sosa ◽  
James M. Moker ◽  
Avelino F. Arellano ◽  
...  

Abstract Northwestern Mexico experiences large variations in water vapor on seasonal time scales in association with the North American monsoon, as well as during the monsoon associated with upper-tropospheric troughs, mesoscale convective systems, tropical easterly waves, and tropical cyclones. Together these events provide more than half of the annual rainfall to the region. A sufficient density of meteorological observations is required to properly observe, understand, and forecast the important processes contributing to the development of organized convection over northwestern Mexico. The stability of observations over long time periods is also of interest to monitor seasonal and longer-time-scale variability in the water cycle. For more than a decade, the U.S. Global Positioning System (GPS) has been used to obtain tropospheric precipitable water vapor (PWV) for applications in the atmospheric sciences. There is particular interest in establishing these systems where conventional operational meteorological networks are not possible due to the lack of financial or human resources to support the network. Here, we provide an overview of the North American Monsoon GPS Transect Experiment 2013 in northwestern Mexico for the study of mesoscale processes and the impact of PWV observations on high-resolution model forecasts of organized convective events during the 2013 monsoon. Some highlights are presented, as well as a look forward at GPS networks with surface meteorology (GPS-Met) planned for the region that will be capable of capturing a wider range of water vapor variability in both space and time across Mexico and into the southwestern United States.


2007 ◽  
Vol 20 (9) ◽  
pp. 1628-1648 ◽  
Author(s):  
Richard H. Johnson ◽  
Paul E. Ciesielski ◽  
Brian D. McNoldy ◽  
Peter J. Rogers ◽  
Richard K. Taft

Abstract The 2004 North American Monsoon Experiment (NAME) provided an unprecedented observing network for studying the structure and evolution of the North American monsoon. This paper focuses on multiscale characteristics of the flow during NAME from the large scale to the mesoscale using atmospheric sounding data from the enhanced observing network. The onset of the 2004 summer monsoon over the NAME region accompanied the typical northward shift of the upper-level anticyclone or monsoon high over northern Mexico into the southwestern United States, but in 2004 this shift occurred slightly later than normal and the monsoon high did not extend as far north as usual. Consequently, precipitation over the southwestern United States was slightly below normal, although increased troughiness over the Great Plains contributed to increased rainfall over eastern New Mexico and western Texas. The first major pulse of moisture into the Southwest occurred around 13 July in association with a strong Gulf of California surge. This surge was linked to the westward passages of Tropical Storm Blas to the south and an upper-level inverted trough over northern Texas. The development of Blas appeared to be favored as an easterly wave moved into the eastern Pacific during the active phase of a Madden–Julian oscillation. On the regional scale, sounding data reveal a prominent sea breeze along the east shore of the Gulf of California, with a deep return flow as a consequence of the elevated Sierra Madre Occidental (SMO) immediately to the east. Subsidence produced a dry layer over the gulf, whereas a deep moist layer existed over the west slopes of the SMO. A prominent nocturnal low-level jet was present on most days over the northern gulf. The diurnal cycle of heating and moistening (Q1 and Q2) over the SMO was characterized by deep convective profiles in the mid- to upper troposphere at 1800 LT, followed by stratiform-like profiles at midnight, consistent with the observed diurnal evolution of precipitation over this coastal mountainous region. The analyses in the core NAME domain are based on a gridded dataset derived from atmospheric soundings only and, therefore, should prove useful in validating reanalyses and regional models.


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 694 ◽  
Author(s):  
Christoforus Bayu Risanto ◽  
Christopher L. Castro ◽  
James M. Moker ◽  
Avelino F. Arellano ◽  
David K. Adams ◽  
...  

This paper examines the ability of the Weather Research and Forecasting model forecast to simulate moisture and precipitation during the North American Monsoon GPS Hydrometeorological Network field campaign that took place in 2017. A convective-permitting model configuration performs daily weather forecast simulations for northwestern Mexico and southwestern United States. Model precipitable water vapor (PWV) exhibits wet biases greater than 0.5 mm at the initial forecast hour, and its diurnal cycle is out of phase with time, compared to observations. As a result, the model initiates and terminates precipitation earlier than the satellite and rain gauge measurements, underestimates the westward propagation of the convective systems, and exhibits relatively low forecast skills on the days where strong synoptic-scale forcing features are absent. Sensitivity analysis shows that model PWV in the domain is sensitive to changes in initial PWV at coastal sites, whereas the model precipitation and moisture flux convergence (QCONV) are sensitive to changes in initial PWV at the mountainous sites. Improving the initial physical states, such as PWV, potentially increases the forecast skills.


2012 ◽  
Vol 25 (12) ◽  
pp. 4220-4241 ◽  
Author(s):  
Nicole J. Schiffer ◽  
Stephen W. Nesbitt

Abstract This study uses an improved surge identification method to examine composites of 29 yr of surface observations and reanalysis data alongside 10 yr of satellite precipitation data to reveal connections between flow, thermodynamic parameters, and precipitation, both within and outside of the North American monsoon (NAM) region, associated with Gulf of California (GoC) moisture surges. The North American Regional Reanalysis (NARR), examined using composites of flow during all detected moisture surges at Yuma, Arizona, and so-called wet and dry surges (those producing anomalously high and low precipitation, respectively, over Arizona and New Mexico), show markedly different flow and moisture patterns that ultimately lead to the differing observed precipitation distributions in the region. Wet surges tend to be associated with moister precursor air masses over the southwestern United States, have a larger contribution of enhanced easterly cross–Sierra Madre Occidental (SMO) moisture transport, and tend to result from a transient cyclonic disturbance tracking across northern Mexico. Dry surges tend to be associated with a more southerly tracking disturbance, are associated with less convection over the SMO, and tend to be associated with a drier presurge air mass over Arizona and New Mexico.


2018 ◽  
Vol 57 (8) ◽  
pp. 1683-1710 ◽  
Author(s):  
James M. Moker ◽  
Christopher L. Castro ◽  
Avelino F. Arellano ◽  
Yolande L. Serra ◽  
David K. Adams

AbstractDuring the North American monsoon global positioning system (GPS) Transect Experiment 2013, daily convective-permitting WRF simulations are performed in northwestern Mexico and the southern Arizona border region using the operational Global Forecast System (GFS) and North American Mesoscale Forecast System (NAM) models as lateral boundary forcing and initial conditions. Compared to GPS precipitable water vapor (PWV), the WRF simulations display a consistent moist bias in the initial specification of PWV leading to convection beginning 3–6 h early. Given appreciable observed rainfall, days are classified as strongly and weakly forced based only on the presence of an inverted trough (IV); gulf surges did not noticeably impact the development of mesoscale convective systems (MCSs) and related convection in northwestern Mexico. Strongly forced days display higher modeled precipitation forecast skill than weakly forced days in the slopes of the northern Sierra Madre Occidental (SMO) away from the crest, especially toward the west where MCSs account for the greatest proportion of all monsoon-related precipitation. A case study spanning 8–10 July 2013 illustrates two consecutive days when nearly identical MCSs evolved over northern Sonora. Although a salient MCS is simulated on the strongly forced day (9–10 July 2013) when an IV is approaching the core monsoon region, a simulated MCS is basically nonexistent on the weakly forced day (8–9 July 2013) when the IV is farther away. The greater sensitivity to the initial specification of PWV in the weakly forced day suggests that assimilation of GPS-derived PWV for these types of days may be of greatest value in improving model precipitation forecasts.


Sign in / Sign up

Export Citation Format

Share Document