Potential Temperature and Potential Vorticity Inversion: Complementary Approaches

2010 ◽  
Vol 67 (12) ◽  
pp. 4001-4016 ◽  
Author(s):  
Joseph Egger ◽  
Klaus-Peter Hoinka

Abstract Given the distribution of one atmospheric variable, that of nearly all others can be derived in balanced flow. In particular, potential vorticity inversion (PVI) selects potential vorticity (PV) to derive pressure, winds, and potential temperature θ. Potential temperature inversion (PTI) starts from available θ fields to derive pressure, winds, and PV. While PVI has been applied extensively, PTI has hardly been used as a research tool although the related technical steps are well known and simpler than those needed in PVI. Two idealized examples of PTI and PVI are compared. The 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) datasets are used to determine typical anomalies of PV and θ in the North Atlantic storm-track region. Statistical forms of PVI and PTI are applied to these anomalies. The inversions are equivalent but the results of PTI are generally easier to understand than those of PVI. The issues of attribution and piecewise inversion are discussed.

2020 ◽  
Vol 33 (6) ◽  
pp. 2093-2109 ◽  
Author(s):  
L. Edel ◽  
C. Claud ◽  
C. Genthon ◽  
C. Palerme ◽  
N. Wood ◽  
...  

AbstractWhile snowfall makes a major contribution to the hydrological cycle in the Arctic, state-of-the-art climatologies still significantly disagree. We present a satellite-based characterization of snowfall in the Arctic using CloudSat observations, and compare it with various other climatologies. First, we examine the frequency and phase of precipitation as well as the snowfall rates from CloudSat over 2007–10. Frequency of solid precipitation is higher than 70% over the Arctic Ocean and 95% over Greenland, while mixed precipitation occurs mainly over North Atlantic (50%) and liquid precipitation over land south of 70°N (40%). Intense mean snowfall rates are located over Greenland, the Barents Sea, and the Alaska range (>500 mm yr−1), and maxima are located over the southeast coast of Greenland (up to 2000 mm yr−1). Then we compare snowfall rates with the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim, herein ERA-I) and Arctic System Reanalysis (ASR). Similar general geographical patterns are observed in all datasets, such as the high snowfall rates along the North Atlantic storm track. Yet, there are significant mean snowfall rate differences over the Arctic between 58° and 82°N between ERA-I (153 mm yr−1), ASR version 1 (206 mm yr−1), ASR version 2 (174 mm yr−1), and CloudSat (183 mm yr−1). Snowfall rates and differences are larger over Greenland. Phase attribution is likely to be a significant source of snowfall rate differences, especially regarding ERA-I underestimation. In spite of its nadir-viewing limitations, CloudSat is an essential source of information to characterize snowfall in the Arctic.


2020 ◽  
Author(s):  
Sebastian Schemm ◽  
Michael Sprenger

Abstract. A novel method is introduced to identify and track the life cycle of upper-level troughs and ridges. The aim is to close the existing gap between methods that detect the initiation phase of upper-level Rossby wave development and methods that detect Rossby wave breaking and decaying waves. The presented method quantifies the horizontal trough and ridge orientation and identifies the corresponding trough and ridge axes. The trough and ridge axes allow us to study the dynamics of pre- and post-trough or ridge regions separately. The tracking allows us to study the temporal evolution of the trough or ridge orientation. The method is based on the curvature of the geopotential height at a given isobaric surface and is computationally efficient. First, the algorithm is introduced in detail, and several illustrative applications, such as a downstream development from the North Atlantic into the Mediterranean, and seasonal climatologies are discussed. For example, the climatological trough and ridge orientations reveal strong zonal and meridional asymmetry. Over land, most troughs and ridges are anticyclonically oriented, while they are cyclonically oriented over the main oceanic storm tracks. The cyclonic orientation increases towards the poles, while the anticyclonic orientation increases towards the equator. Trough detection frequencies are climatologically high downstream of the Rocky Mountains and over East Asia and Eastern Europe, but are remarkably low downstream of Greenland. Furthermore, the detection frequencies of troughs are high at the end of the Pacific storm track, but no comparable signal is seen over the North Atlantic. During El Niño-affected winters, troughs and ridges tilt anomalously strong cyclonically over North America and the North Atlantic, in agreement with previous findings based on traditional variance-based diagnostics such as E vectors. During La Niña the situation is essentially reversed. Finally, the identified troughs and ridges are used as starting points for 24-hour backward parcel trajectories, and a discussion of the distribution of pressure, potential temperature and potential vorticity changes along the flow path is provided to give insight into the three-dimensional nature of troughs and ridges.


2020 ◽  
Vol 1 (2) ◽  
pp. 459-479
Author(s):  
Sebastian Schemm ◽  
Stefan Rüdisühli ◽  
Michael Sprenger

Abstract. A novel method is introduced to identify and track the life cycle of upper-level troughs and ridges. The aim is to close the existing gap between methods that detect the initiation phase of upper-level Rossby wave development and methods that detect Rossby wave breaking and decaying waves. The presented method quantifies the horizontal trough and ridge orientation and identifies the corresponding trough and ridge axes. These allow us to study the dynamics of pre- and post-trough–ridge regions separately. The method is based on the curvature of the geopotential height at a given isobaric surface and is computationally efficient. Spatiotemporal tracking allows us to quantify the maturity of troughs and ridges and could also be used to study the temporal evolution of the trough or ridge orientation. First, the algorithm is introduced in detail, and several illustrative applications – such as a downstream development from the North Atlantic into the Mediterranean – and seasonal climatologies are discussed. For example, the climatological trough and ridge orientations reveal strong zonal and meridional asymmetry: over land, most troughs and ridges are anticyclonically oriented, while they are cyclonically oriented over the main oceanic storm tracks; the cyclonic orientation increases toward the poles, while the anticyclonic orientation increases toward the Equator. Trough detection frequencies are climatologically high downstream of the Rocky Mountains and over East Asia and eastern Europe but are remarkably low downstream of Greenland. Furthermore, the detection frequencies of troughs are high at the end of the North Pacific storm track and at the end of the North Atlantic storm track over the British Isles. During El Niño-affected winters, troughs and ridges exhibit an anomalously strong cyclonic tilt over North America and the North Atlantic, in agreement with previous findings based on traditional variance-based diagnostics such as E vectors. During La Niña, the situation is essentially reversed. The orientation of troughs and ridges also depends on the jet position. For example, during midwinter over the Pacific, when the subtropical jet is strongest and located farthest equatorward, cyclonically oriented troughs and ridges dominate the climatology. Finally, the identified troughs and ridges are used as starting points for 24 h backward parcel trajectories, and a discussion of the distribution of pressure, potential temperature and potential vorticity changes along the trajectories is provided to give insight into the three-dimensional nature of troughs and ridges.


2011 ◽  
Vol 68 (6) ◽  
pp. 1340-1346 ◽  
Author(s):  
Joseph Egger ◽  
Klaus-Peter Hoinka

Abstract The linear theory of point correlation maps for synoptic systems relies so far mainly on specifications of stochastic forcing due to nonlinear processes that are not based on observations. Forty-year ECMWF Re-Analysis (ERA-40) data are used to derive time series of the forcing terms in a potential vorticity equation for a correlation point in the North Atlantic storm-track region. It is found that the forcing correlations are restricted to distances less than 1500 km to the correlation point in zonal direction and just a few hundred kilometers in meridional direction. The forcing is not even approximately white in time. Covariances of forcing and potential vorticity are presented as well. An advection equation with simple damping and realistic stochastic forcing is solved to approximate the observed covariances of forcing and potential vorticity.


2009 ◽  
Vol 137 (1) ◽  
pp. 99-115 ◽  
Author(s):  
H. F. Dacre ◽  
S. L. Gray

Abstract A climatology of extratropical cyclones is produced using an objective method of identifying cyclones based on gradients of 1-km height wet-bulb potential temperature. Cyclone track and genesis density statistics are analyzed and this method is found to compare well with other cyclone identification methods. The North Atlantic storm track is reproduced along with the major regions of genesis. Cyclones are grouped according to their genesis location and the corresponding lysis regions are identified. Most of the cyclones that cross western Europe originate in the east Atlantic where the baroclinicity and the sea surface temperature gradients are weak compared to the west Atlantic. East Atlantic cyclones also have higher 1-km height relative vorticity and lower mean sea level pressure at their genesis point than west Atlantic cyclones. This is consistent with the hypothesis that they are secondary cyclones developing on the trailing fronts of preexisting “parent” cyclones. The evolution characteristics of composite west and east Atlantic cyclones have been compared. The ratio of their upper- to lower-level forcing indicates that type B cyclones are predominant in both the west and east Atlantic, with strong upper- and lower-level features. Among the remaining cyclones, there is a higher proportion of type C cyclones in the east Atlantic, whereas types A and C are equally frequent in the west Atlantic.


2009 ◽  
Vol 66 (2) ◽  
pp. 495-507 ◽  
Author(s):  
Lawrence Coy ◽  
Stephen Eckermann ◽  
Karl Hoppel

Abstract The major stratospheric sudden warming (SSW) of January 2006 is examined using meteorological fields from Goddard Earth Observing System version 4 (GEOS-4) analyses and forecast fields from the Navy Operational Global Atmospheric Prediction System–Advanced Level Physics, High Altitude (NOGAPS-ALPHA). The study focuses on the upper tropospheric forcing that led to the major SSW and the vertical structure of the subtropic wave breaking near 10 hPa that moved low tropical values of potential vorticity (PV) to the pole. Results show that an eastward-propagating upper tropospheric ridge over the North Atlantic with its associated cold temperature perturbations (as manifested by high 360-K potential temperature surface perturbations) and large positive local values of meridional heat flux directly forced a change in the stratospheric polar vortex, leading to the stratospheric subtropical wave breaking and warming. Results also show that the anticyclonic development, initiated by the subtropical wave breaking and associated with the poleward advection of the low PV values, occurred over a limited altitude range of approximately 6–10 km. The authors also show that the poleward advection of this localized low-PV anomaly was associated with changes in the Eliassen–Palm (EP) flux from equatorward to poleward, suggesting an important role for Rossby wave reflection in the SSW of January 2006. Similar upper tropospheric forcing and subtropical wave breaking were found to occur prior to the major SSW of January 2003.


2009 ◽  
Vol 22 (12) ◽  
pp. 3177-3192 ◽  
Author(s):  
Terrence M. Joyce ◽  
Young-Oh Kwon ◽  
Lisan Yu

Abstract Coherent, large-scale shifts in the paths of the Gulf Stream (GS) and the Kuroshio Extension (KE) occur on interannual to decadal time scales. Attention has usually been drawn to causes for these shifts in the overlying atmosphere, with some built-in delay of up to a few years resulting from propagation of wind-forced variability within the ocean. However, these shifts in the latitudes of separated western boundary currents can cause substantial changes in SST, which may influence the synoptic atmospheric variability with little or no time delay. Various measures of wintertime atmospheric variability in the synoptic band (2–8 days) are examined using a relatively new dataset for air–sea exchange [Objectively Analyzed Air–Sea Fluxes (OAFlux)] and subsurface temperature indices of the Gulf Stream and Kuroshio path that are insulated from direct air–sea exchange, and therefore are preferable to SST. Significant changes are found in the atmospheric variability following changes in the paths of these currents, sometimes in a local fashion such as meridional shifts in measures of local storm tracks, and sometimes in nonlocal, broad regions coincident with and downstream of the oceanic forcing. Differences between the North Pacific (KE) and North Atlantic (GS) may be partly related to the more zonal orientation of the KE and the stronger SST signals of the GS, but could also be due to differences in mean storm-track characteristics over the North Pacific and North Atlantic.


2007 ◽  
Vol 20 (12) ◽  
pp. 2721-2744 ◽  
Author(s):  
Peter G. Baines ◽  
Chris K. Folland

Abstract It is shown that a number of important characteristics of the global atmospheric circulation and climate changed in a near-monotonic fashion over the decade, or less, centered on the late 1960s. These changes were largest or commonest in tropical regions, the Southern Hemisphere, and the Atlantic sector of the Northern Hemisphere. Some, such as the decrease in rainfall in the African Sahel, are well known. Others appear to be new, but their combined extent is global and dynamical linkages between them are evident. The list of affected variables includes patterns of SST; tropical rainfall in the African Sahel and Sudan, the Amazon basin, and northeast Brazil; pressure and SST in the tropical North Atlantic and the west and central Pacific; various branches of the southern Hadley circulation and the southern subtropical jet stream; the summer North Atlantic Oscillation; south Greenland temperature; the Southern Hemisphere storm track; and, quite likely, the Antarctic sea ice boundary. These changes are often strongest in the June–August season; changes are also seen in December–February but are generally smaller. In Greenland, annual mean temperature seems to be affected strongly, reflecting similar changes in SST throughout the year in the higher latitudes of the North Atlantic. Possible causes for these coordinated changes are briefly evaluated. The most likely candidates appear to be a likely reduction in the northward oceanic heat flux associated with the North Atlantic thermohaline circulation in the 1950s to 1970s, which was nearly in phase with a rapid increase in anthropogenic aerosol emissions during the 1950s and 1960s, particularly over Europe and North America.


1961 ◽  
Vol 15 (2) ◽  
pp. 326-329 ◽  

The Ministerial Council of the North Atlantic Treaty Organization (NATO) held its eleventh annual ministerial review at NATO headquarters in Paris from December 16 to 18, 1960. The main topic of discussion at the meeting was the announcement by United States Secretary of State Christian Herter of what he reportedly termed a new concept for the operation of medium-range ballistic missiles. The United States plan included: 1) a proposal that NATO discuss a multilateral system for the political control of the weapons; 2) an offer to place five ballistic missile submarines armed with 80 Polaris missiles under the command of the Supreme Allied Commander, Europe (SACEUR), by the end of 1963; and 3) a suggestion that the other members of the alliance contribute approximately 100 more medium-range ballistic missiles by purchasing them in the United States. The press reported that Lord Home, Foreign Secretary of the United Kingdom, welcomed the United States proposal and said that NATO should examine the possibility of a medium-range ballistic missile force under multilateral control, a suggestion in which M. Couve de Murville, the French Foreign Minister, concurred. The West German Defense Minister, Franz Joseph Strauss, told the Ministers, the press announced, that concrete decisions on the United States proposal should be taken in the near future, and that plans for NATO control of the Polaris missile force should be pushed through by military and political authorities early in the spring of 1961. The Council of Ministers decided to pass on to its Permanent Comand other related materials, according to the press.


2017 ◽  
Vol 74 (3) ◽  
pp. 801-807 ◽  
Author(s):  
Joseph Egger ◽  
Klaus-Peter Hoinka ◽  
Thomas Spengler

Abstract Inversion of potential vorticity density with absolute vorticity and function η is explored in η coordinates. This density is shown to be the component of absolute vorticity associated with the vertical vector of the covariant basis of η coordinates. This implies that inversion of in η coordinates is a two-dimensional problem in hydrostatic flow. Examples of inversions are presented for (θ is potential temperature) and (p is pressure) with satisfactory results for domains covering the North Pole. The role of the boundary conditions is investigated and piecewise inversions are performed as well. The results shed new light on the interpretation of potential vorticity inversions.


Sign in / Sign up

Export Citation Format

Share Document