Tropospheric Precursors of Anomalous Northern Hemisphere Stratospheric Polar Vortices

2010 ◽  
Vol 23 (12) ◽  
pp. 3282-3299 ◽  
Author(s):  
Chaim I. Garfinkel ◽  
Dennis L. Hartmann ◽  
Fabrizio Sassi

Abstract Regional extratropical tropospheric variability in the North Pacific and eastern Europe is well correlated with variability in the Northern Hemisphere wintertime stratospheric polar vortex in both the ECMWF reanalysis record and in the Whole Atmosphere Community Climate Model. To explain this correlation, the link between stratospheric vertical Eliassen–Palm flux variability and tropospheric variability is analyzed. Simple reasoning shows that variability in the North Pacific and eastern Europe can deepen or flatten the wintertime tropospheric stationary waves, and in particular its wavenumber-1 and -2 components, thus providing a physical explanation for the correlation between these regions and vortex weakening. These two pathways begin to weaken the upper stratospheric vortex nearly immediately, with a peak influence apparent after a lag of some 20 days. The influence then appears to propagate downward in time, as expected from wave–mean flow interaction theory. These patterns are influenced by ENSO and October Eurasian snow cover. Perturbations in the vortex induced by the two regions add linearly. These two patterns and the quasi-biennial oscillation (QBO) are linearly related to 40% of polar vortex variability during winter in the reanalysis record.

2017 ◽  
Author(s):  
Lesley J. Gray ◽  
James A. Anstey ◽  
Yoshio Kawatani ◽  
Hua Lu ◽  
Scott Osprey ◽  
...  

Abstract. Teleconnections between the Quasi Biennial Oscillation (QBO) and the Northern Hemisphere zonally-averaged zonal winds, mean sea level pressure (mslp) and tropical precipitation are explored using regression analysis. A novel technique is introduced to separate responses associated with the stratospheric polar vortex from other underlying mechanisms. A previously reported mslp response in January, with a pattern that resembles the positive phase of the North Atlantic Oscillation (NAO) under QBO westerly conditions, is confirmed and found to be primarily associated with a QBO modulation of the stratospheric polar vortex. This mid-winter response is relatively insensitive to the exact height of the maximum QBO westerlies and a maximum response occurs with westerlies over a relatively deep range between 10–70 hPa. Two additional mslp responses are reported, in early winter (December) and late winter (February/March). In contrast to the January response the early and late winter responses show maximum sensitivity to the QBO winds at ~ 20 hPa and ~ 70 hPa but are relatively insensitive to the QBO winds in between (~ 50 hPa). The late winter response is centred over the North Pacific and is associated with QBO influence from the lowermost stratosphere at tropical/subtropical latitudes. The early winter response consists of anomalies over both the North Pacific and Europe, but the mechanism is unclear and requires further investigation. QBO anomalies are found in tropical precipitation amounts and a southward shift of the Inter-tropical Convergence Zone under westerly QBO conditions is also evident.


2011 ◽  
Vol 68 (6) ◽  
pp. 1273-1289 ◽  
Author(s):  
Chaim I. Garfinkel ◽  
Dennis L. Hartmann

Abstract A dry primitive equation model is used to explain how the quasi-biennial oscillation (QBO) of the tropical stratosphere can influence the troposphere, even in the absence of tropical convection anomalies and a variable stratospheric polar vortex. QBO momentum anomalies induce a meridional circulation to maintain thermal wind balance. This circulation includes zonal wind anomalies that extend from the equatorial stratosphere into the subtropical troposphere. In the presence of extratropical eddies, the zonal wind anomalies are intensified and extend downward to the surface. The tropospheric response differs qualitatively between integrations in which the subtropical jet is strong and integrations in which the subtropical jet is weak. While fluctuation–dissipation theory provides a guide to predicting the response in some cases, significant nonlinearity in others, particularly those designed to model the midwinter subtropical jet of the North Pacific, prevents its universal application. When the extratropical circulation is made zonally asymmetric, the response to the QBO is greatest in the exit region of the subtropical jet. The dry model is able to simulate much of the Northern Hemisphere wintertime tropospheric response to the QBO observed in reanalysis datasets and in long time integrations of the Whole Atmosphere Community Climate Model (WACCM).


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 670 ◽  
Author(s):  
Kequan Zhang ◽  
Tao Wang ◽  
Mian Xu ◽  
Jiankai Zhang

The effects of wintertime stratospheric polar vortex variation on the climate over the North Pacific Ocean during late winter and spring are analyzed using the National Centers for Environmental Predictions, version 2 (NCEP2) reanalysis dataset. The analysis revealed that, during weak polar vortex (WPV) events, there are noticeably lower geopotential height anomalies over the Bering Sea and greater height anomalies over the central part of the North Pacific Ocean than during strong polar vortex (SPV) events. The formation of the dipolar structure of the geopotential height anomalies is due to a weakened polar jet and a strengthened mid-latitude jet in the troposphere via geostrophic equilibrium. The mechanisms responsible for the changes in the tropospheric jet over the North Pacific Ocean are summarized as follows: when the stratospheric polar westerly is decelerated, the high-latitude eastward waves slow down, and the enhanced equatorward propagation of the eddy momentum flux throughout the troposphere at 60° N. Consequently, the eddy-driven jet over the North Pacific Ocean also shows a southward displacement, leading to a weaker polar jet but a stronger mid-latitude westerly compared with those during the SPV events. Furthermore, anomalous anti-cyclonic flows associated with the higher pressure over the North Pacific Ocean during WPV events induce a warming sea surface temperature (SST) over the western and central parts of the North Pacific Ocean and a cooling SST over the Bering Sea and along the west coast of North America. This SST pattern can last until May, which favors the persistence of the anti-cyclonic flows over the North Pacific Ocean during WPV events. A well-resolved stratosphere and coupled atmosphere-ocean model (CMCC-CMS) can basically reproduce the impacts of stratospheric polar vortex variations on the North Pacific climate as seen in NCEP2 data, although the simulated dipole of geopotential height anomalies is shifted more southward.


2021 ◽  
pp. 1-54
Author(s):  
Ying Dai ◽  
Peter Hitchcock

AbstractThe canonical tropospheric response to a weakening of the stratospheric vortex—an equatorward shift of the eddy-driven jet—is mostly limited to the North Atlantic following sudden stratospheric warmings (SSWs). A coherent change in the Pacific eddy-driven jet is notably absent. Why is this so? Using daily reanalysis data, we show that air-sea interactions over the North Pacific are responsible for the basin-asymmetric response to SSWs. Prior to the onset of some SSWs, their tropospheric precursors produce a dipolar SST pattern in the North Pacific, which then persists as the stratospheric polar vortex breaks down following the onset of the SSW. By reinforcing the lower tropospheric baroclinicity, the dipolar SST pattern helps sustain the generation of baroclinic eddies, strengthening the near-surface Pacific eddy-driven jet and maintaining its near-climatological-mean state. This prevents the jet from being perturbed by the downward influence of the stratospheric anomalies. As a result, these SSWs exhibit a highly basin-asymmetric surface response with only the Atlantic eddy-driven jet shifted equatorward. For SSWs occurring without the atmospheric precursors in the North Pacific troposphere, the dipolar SST pattern is absent due to the lack of the atmospheric forcing. In the absence of the dipolar SST pattern and the resultant eddy-mean flow feedbacks, these SSWs exhibit a basin-symmetric surface response with both the Atlantic and the Pacific eddy-driven jets shifted equatorward. Our results provide an ocean-atmosphere coupled perspective on stratosphere-troposphere interaction following SSW events and have potential for improving subseasonal to seasonal forecasts for surface weather and climate.


2019 ◽  
Vol 32 (16) ◽  
pp. 5235-5250 ◽  
Author(s):  
Hainan Gong ◽  
Lin Wang ◽  
Wen Chen ◽  
Renguang Wu ◽  
Wen Zhou ◽  
...  

AbstractThe wintertime Arctic Oscillation (AO) pattern in phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models displays notable differences from the reanalysis. The North Pacific center of the AO pattern is larger in the ensemble mean of 27 models than in the reanalysis, and the magnitude of the North Pacific center of the AO pattern varies largely among the models. This study investigates the plausible sources of the diversity of the AO pattern in the models. Analysis indicates that the amplitude of the North Pacific center is associated with the coupling between the North Pacific and North Atlantic, which in turn is primarily modulated by the strength of the stratospheric polar vortex. A comparative analysis is conducted for the strong polar vortex (SPV) and weak polar vortex (WPV) models. It reveals that a stronger stratospheric polar vortex induces more planetary waves to reflect from the North Pacific to the North Atlantic and more wave activity fluxes to propagate from the North Pacific to the North Atlantic in the SPV models than in the WPV models. Thus, the coupling of atmospheric circulation between the North Pacific and North Atlantic is stronger in the SPV models, which facilitates more North Pacific variability to be involved in the AO variability and induces a stronger North Pacific center in the AO pattern. The increase in vertical resolution may improve the simulation of the stratospheric polar vortex and thereby reduces the model biases in the North Pacific–North Atlantic coupling and thereby the amplitude of the North Pacific center of the AO pattern in models.


2011 ◽  
Vol 68 (9) ◽  
pp. 2026-2041 ◽  
Author(s):  
Chaim I. Garfinkel ◽  
Dennis L. Hartmann

Abstract Experiments with the Whole Atmosphere Community Climate Model (WACCM) are used to understand the influence of the stratospheric tropical quasi-biennial oscillation (QBO) in the troposphere. The zonally symmetric circulation in thermal wind balance with the QBO affects high-frequency eddies throughout the extratropical troposphere. The influence of the QBO is strongest and most robust in the North Pacific near the jet exit region, in agreement with observations. Variability of the stratospheric polar vortex does not appear to explain the effect of the QBO in the troposphere in the model, although it does contribute to the response in the North Atlantic. Anomalies in tropical deep convection associated with the QBO appear to damp, rather than drive, the effect of the QBO in the extratropical troposphere. Rather, the crucial mechanism whereby the QBO modulates the extratropical troposphere appears to be the interaction of tropospheric transient waves with the axisymmetric circulation in thermal wind balance with the QBO. The response to QBO winds of realistic amplitude is stronger for perpetual February radiative conditions and sea surface temperatures than perpetual January conditions, consistent with the observed response in reanalysis data, in a coupled seasonal WACCM integration, and in dry model experiments described in Part I.


2013 ◽  
Vol 26 (13) ◽  
pp. 4596-4611 ◽  
Author(s):  
Damianos F. Mantsis ◽  
Amy C. Clement ◽  
Ben Kirtman ◽  
Anthony J. Broccoli ◽  
Michael P. Erb

Abstract The response of the Northern Hemisphere summer anticyclones to a change in the timing of perihelion is investigated using the GFDL Climate Model version 2.1 (CM2.1). The orbital forcing consists of changes in the seasonal cycle of the top-of-atmosphere insolation as the perihelion shifts from the Northern Hemisphere winter to the Northern Hemisphere summer solstice. The North Pacific summer anticyclone experiences a large strengthening as well as a northward and westward expansion. The North Atlantic subtropical high experiences a smaller change that consists of a slight westward expansion but little change in strength. Experiments with a primitive equation atmospheric model show that these changes represent the circulation response to changes in the diabatic heating, both local and remotely. The remote diabatic forcing is associated with changes in the Southeast Asian and African summer monsoons, and the local forcing is dominated by a combined effect of a change in low clouds and local precipitation.


2018 ◽  
Vol 18 (11) ◽  
pp. 8227-8247 ◽  
Author(s):  
Lesley J. Gray ◽  
James A. Anstey ◽  
Yoshio Kawatani ◽  
Hua Lu ◽  
Scott Osprey ◽  
...  

Abstract. Teleconnections between the Quasi Biennial Oscillation (QBO) and the Northern Hemisphere zonally averaged zonal winds, mean sea level pressure (mslp) and tropical precipitation are explored. The standard approach that defines the QBO using the equatorial zonal winds at a single pressure level is compared with the empirical orthogonal function approach that characterizes the vertical profile of the equatorial winds. Results are interpreted in terms of three potential routes of influence, referred to as the tropical, subtropical and polar routes. A novel technique is introduced to separate responses via the polar route that are associated with the stratospheric polar vortex, from the other two routes. A previously reported mslp response in January, with a pattern that resembles the positive phase of the North Atlantic Oscillation under QBO westerly conditions, is confirmed and found to be primarily associated with a QBO modulation of the stratospheric polar vortex. This mid-winter response is relatively insensitive to the exact height of the maximum QBO westerlies and a maximum positive response occurs with westerlies over a relatively deep range between 10 and 70 hPa. Two additional mslp responses are reported, in early winter (December) and late winter (February/March). In contrast to the January response the early and late winter responses show maximum sensitivity to the QBO winds at ∼ 20 and ∼ 70 hPa respectively, but are relatively insensitive to the QBO winds in between (∼ 50 hPa). The late winter response is centred over the North Pacific and is associated with QBO influence from the lowermost stratosphere at tropical/subtropical latitudes in the Pacific sector. The early winter response consists of anomalies over both the North Pacific and Europe, but the mechanism for this response is unclear. Increased precipitation occurs over the tropical western Pacific under westerly QBO conditions, particularly during boreal summer, with maximum sensitivity to the QBO winds at 70 hPa. The band of precipitation across the Pacific associated with the Inter-tropical Convergence Zone (ITCZ) shifts southward under QBO westerly conditions. The empirical orthogonal function (EOF)-based analysis suggests that this ITCZ precipitation response may be particularly sensitive to the vertical wind shear in the vicinity of 70 hPa and hence the tropical tropopause temperatures.


2013 ◽  
Vol 26 (6) ◽  
pp. 2077-2095 ◽  
Author(s):  
Chaim I. Garfinkel ◽  
Darryn W. Waugh ◽  
Edwin P. Gerber

Abstract A dry general circulation model is used to investigate how coupling between the stratospheric polar vortex and the extratropical tropospheric circulation depends on the latitude of the tropospheric jet. The tropospheric response to an identical stratospheric vortex configuration is shown to be strongest for a jet centered near 40° and weaker for jets near either 30° or 50° by more than a factor of 3. Stratosphere-focused mechanisms based on stratospheric potential vorticity inversion, eddy phase speed, and planetary wave reflection, as well as arguments based on tropospheric eddy heat flux and zonal length scale, appear to be incapable of explaining the differences in the magnitude of the jet shift. In contrast, arguments based purely on tropospheric variability involving the strength of eddy–zonal mean flow feedbacks and jet persistence, and related changes in the synoptic eddy momentum flux, appear to explain this effect. The dependence of coupling between the stratospheric polar vortex and the troposphere on tropospheric jet latitude found here is consistent with 1) the observed variability in the North Atlantic and the North Pacific and 2) the trend in the Southern Hemisphere as projected by comprehensive models.


2008 ◽  
Vol 8 (2) ◽  
pp. 5537-5561 ◽  
Author(s):  
J. Liu ◽  
D. L. Mauzerall ◽  
L. W. Horowitz

Abstract. We analyze the effect of varying East Asian (EA) sulfur emissions on sulfate concentrations in the Northern Hemisphere, using a global coupled oxidant-aerosol model (MOZART-2). We conduct a base and five sensitivity simulations, in which sulfur emissions from each continent are tagged, to establish the source-receptor (S-R) relationship between EA sulfur emissions and sulfate concentrations over source and downwind regions. We find that from west to east across the North Pacific, EA sulfate contributes approximately 80%–20% of sulfate at the surface, but at least 50% at 500 hPa. In addition, EA SO2 emissions account for approximately 30%–50% and 10%–20% of North American background sulfate over the western and eastern US, respectively. The contribution of EA sulfate to the western US at the surface is highest in MAM and JJA, but is lowest in DJF. Reducing EA SO2 emissions will significantly decrease the spatial extent of the EA sulfate influence over the North Pacific both at the surface and at 500 mb in all seasons, but the extent of influence is insensitive to emission increases, particularly in DJF and JJA. We find that EA sulfate concentrations over most downwind regions respond nearly linearly to changes in EA SO2 emissions, but sulfate concentrations over the EA source region increase more slowly than SO2 emissions, particularly at the surface and in winter, due to limited availability of oxidants (mostly H2O2). We find that similar estimates of the S-R relationship for trans-Pacific transport of EA sulfate would be obtained using either sensitivity or tagging techniques. Our findings suggest that future changes in EA sulfur emissions may cause little change in the sulfate induced health impact over downwind continents but SO2 emission reductions may significantly reduce the sulfate related climate cooling over the North Pacific and the United States.


Sign in / Sign up

Export Citation Format

Share Document