scholarly journals An Upper Limit to Seasonal Rainfall Predictability?

2010 ◽  
Vol 23 (12) ◽  
pp. 3332-3351 ◽  
Author(s):  
Seth Westra ◽  
Ashish Sharma

Abstract The asymptotic predictability of global land surface precipitation is estimated empirically at the seasonal time scale with lead times from 0 to 12 months. Predictability is defined as the unbiased estimate of predictive skill using a given model structure assuming that all relevant predictors are included, thus representing an upper bound to the predictive skill for seasonal forecasting applications. To estimate predictability, a simple linear regression model is formulated based on the assumption that land surface precipitation variability can be divided into a component forced by low-frequency variability in the global sea surface temperature anomaly (SSTA) field and that can theoretically be predicted one or more seasons into the future, and a “weather noise” component that originates from nonlinear dynamical instabilities in the atmosphere and is not predictable beyond ~10 days. Asymptotic predictability of global precipitation was found to be 14.7% of total precipitation variance using 1900–2007 data, with only minor increases in predictability using shorter and presumably less error-prone records. This estimate was derived based on concurrent SSTA–precipitation relationships and therefore constitutes the maximum skill achievable assuming perfect forecasts of the evolution of the SSTA field. Imparting lags on the SSTA–precipitation relationship, the 3-, 6-, 9-, and 12-month predictability of global precipitation was estimated to be 7.3%, 5.4%, 4.2%, and 3.7%, respectively, demonstrating the comparative gains that can be achieved by developing improved SSTA forecasts compared to developing improved SSTA–precipitation relationships. Finally, the actual average cross-validated predictive skill was found to be 2.1% of the total precipitation variance using the full 1900–2007 dataset and was dominated by the El Niño–Southern Oscillation (ENSO) phenomenon. This indicates that there is still significant potential for increases in predictive skill through improved parameter estimates, the use of longer and/or more reliable datasets, and the use of larger spatial fields to substitute for limited temporal records.

2017 ◽  
Vol 21 (1) ◽  
pp. 409-422 ◽  
Author(s):  
Jason P. Evans ◽  
Xianhong Meng ◽  
Matthew F. McCabe

Abstract. In this study, we have examined the ability of a regional climate model (RCM) to simulate the extended drought that occurred throughout the period of 2002 through 2007 in south-east Australia. In particular, the ability to reproduce the two drought peaks in 2002 and 2006 was investigated. Overall, the RCM was found to reproduce both the temporal and the spatial structure of the drought-related precipitation anomalies quite well, despite using climatological seasonal surface characteristics such as vegetation fraction and albedo. This result concurs with previous studies that found that about two-thirds of the precipitation decline can be attributed to the El Niño–Southern Oscillation (ENSO). Simulation experiments that allowed the vegetation fraction and albedo to vary as observed illustrated that the intensity of the drought was underestimated by about 10 % when using climatological surface characteristics. These results suggest that in terms of drought development, capturing the feedbacks related to vegetation and albedo changes may be as important as capturing the soil moisture–precipitation feedback. In order to improve our modelling of multi-year droughts, the challenge is to capture all these related surface changes simultaneously, and provide a comprehensive description of land surface–precipitation feedback during the droughts development.


2012 ◽  
Vol 5 (2) ◽  
pp. 921-998 ◽  
Author(s):  
A. Becker ◽  
P. Finger ◽  
A. Meyer-Christoffer ◽  
B. Rudolf ◽  
K. Schamm ◽  
...  

Abstract. The availability of highly accessible and reliable monthly gridded data sets of the global land-surface precipitation is a need that has already been identified in the mid-80s when there was a complete lack of a globally homogeneous gauge based precipitation analysis. Since 1989 the Global Precipitation Climatology Centre (GPCC) has built up a unique capacity to assemble, quality assure, and analyse rain gauge data gathered from all over the world. The resulting data base has exceeded 200 yr in temporal coverage and has acquired data from more than 85 000 stations world-wide. This paper provides the reference publication for the four globally gridded monthly precipitation products of the GPCC covering a 111-yr analysis period from 1901–present, processed from this data base. As required for a reference publication, the content of the product portfolio, as well as the underlying methodologies to process and interpolate are detailed. Moreover, we provide information on the systematic and statistical errors associated with the data products. Finally, sample applications provide potential users of GPCC data products with suitable advice on capabilities and constraints of the gridded data sets. In doing so, the capabilities to access ENSO and NAO sensitive precipitation regions and to perform trend analysis across the past 110 yr are demonstrated. The four gridded products, i.e. the Climatology V2011 (CLIM), the Full Data Reanalysis (FD) V6, the Monitoring Product (MP) V4, and the First Guess Product (FG) are public available on easy accessible latitude longitude grids encoded in zipped clear text ASCII files for subsequent visualization and download through the GPCC download gate hosted on ftp://ftp.dwd.de/pub/data/gpcc/html/download_gate.html by the Deutscher Wetterdienst (DWD), Offenbach, Germany. Depending on the product four (0.25°, 0.5°, 1.0°, 2.5° for CLIM), three (0.5°, 1.0°, 2.5°, for FD), two (1.0°, 2.5° for MP) or one (1.0° for FG) resolutions are provided, and for each product a DOI reference is provided allowing for public user access to the products. A preliminary description of the scope of a fifth product – the Homogenized Precipitation Analysis (HOMPRA) – is also provided. Its comprehensive description will be handed later in an extra paper upon completion of this data product. DOIs of the gridded datasets examined: doi:10.5676/DWD_GPCC/CLIM_M_V2011_025, doi:10.5676/DWD_GPCC/CLIM_M_V2011_050, doi:10.5676/DWD_GPCC/CLIM_M_V2011_100, doi:10.5676/DWD_GPCC/CLIM_M_V2011_250, doi:10.5676/DWD_GPCC/FD_M_V6_050, doi:10.5676/DWD_GPCC/FD_M_V6_100, doi:10.5676/DWD_GPCC/FD_M_V6_250, doi:10.5676/DWD_GPCC/MP_M_V4_100, doi:10.5676/DWD_GPCC/MP_M_V4_250, doi:10.5676/DWD_GPCC/FG_M_100


2013 ◽  
Vol 5 (1) ◽  
pp. 71-99 ◽  
Author(s):  
A. Becker ◽  
P. Finger ◽  
A. Meyer-Christoffer ◽  
B. Rudolf ◽  
K. Schamm ◽  
...  

Abstract. The availability of highly accessible and reliable monthly gridded data sets of global land-surface precipitation is a need that was already identified in the mid-1980s when there was a complete lack of globally homogeneous gauge-based precipitation analyses. Since 1989, the Global Precipitation Climatology Centre (GPCC) has built up its unique capacity to assemble, quality assure, and analyse rain gauge data gathered from all over the world. The resulting database has exceeded 200 yr in temporal coverage and has acquired data from more than 85 000 stations worldwide. Based on this database, this paper provides the reference publication for the four globally gridded monthly precipitation products of the GPCC, covering a 111-yr analysis period from 1901–present. As required for a reference publication, the content of the product portfolio, as well as the underlying methodologies to process and interpolate are detailed. Moreover, we provide information on the systematic and statistical errors associated with the data products. Finally, sample applications provide potential users of GPCC data products with suitable advice on capabilities and constraints of the gridded data sets. In doing so, the capabilities to access El Niño–Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) sensitive precipitation regions and to perform trend analyses across the past 110 yr are demonstrated. The four gridded products, i.e. the Climatology (CLIM) V2011, the Full Data Reanalysis (FD) V6, the Monitoring Product (MP) V4, and the First Guess Product (FG), are publicly available on easily accessible latitude/longitude grids encoded in zipped clear text ASCII files for subsequent visualization and download through the GPCC download gate hosted on ftp://ftp.dwd.de/pub/data/gpcc/html/download_gate.html by the Deutscher Wetterdienst (DWD), Offenbach, Germany. Depending on the product, four (0.25°, 0.5°, 1.0°, 2.5° for CLIM), three (0.5°, 1.0°, 2.5°, for FD), two (1.0°, 2.5° for MP) or one (1.0° for FG) resolution is provided, and for each product a DOI reference is provided allowing for public user access to the products. A preliminary description of the scope of a fifth product – the Homogenized Precipitation Analysis (HOMPRA) – is also provided. Its comprehensive description will be submitted later in an extra paper upon completion of this data product. DOIs of the gridded data sets examined are as follows: doi:10.5676/DWD_GPCC/CLIM_M_V2011_025, doi:10.5676/DWD_GPCC/CLIM_M_V2011_050, doi:10.5676/DWD_GPCC/CLIM_M_V2011_100, doi:10.5676/DWD_GPCC/CLIM_M_V2011_250, doi:10.5676/DWD_GPCC/FD_M_V6_050, doi:10.5676/DWD_GPCC/FD_M_V6_100, doi:10.5676/DWD_GPCC/FD_M_V6_250, doi:10.5676/DWD_GPCC/MP_M_V4_100, doi:10.5676/DWD_GPCC/MP_M_V4_250, doi:10.5676/DWD_GPCC/FG_M_100.


2008 ◽  
Vol 21 (9) ◽  
pp. 1948-1962 ◽  
Author(s):  
R. Garcia-Herrera ◽  
D. Barriopedro ◽  
E. Hernández ◽  
H. F. Diaz ◽  
R. R. Garcia ◽  
...  

Abstract The authors present a chronology of El Niño (EN) events based on documentary records from northern Peru. The chronology, which covers the period 1550–1900, is constructed mainly from primary sources from the city of Trujillo (Peru), the Archivo General de Indias in Seville (Spain), and the Archivo General de la Nación in Lima (Peru), supplemented by a reassessment of documentary evidence included in previously published literature. The archive in Trujillo has never been systematically evaluated for information related to the occurrence of El Niño–Southern Oscillation (ENSO). Abundant rainfall and river discharge correlate well with EN events in the area around Trujillo, which is very dry during most other years. Thus, rain and flooding descriptors, together with reports of failure of the local fishery, are the main indicators of EN occurrence that the authors have searched for in the documents. A total of 59 EN years are identified in this work. This chronology is compared with the two main previous documentary EN chronologies and with ENSO indicators derived from proxy data other than documentary sources. Overall, the seventeenth century appears to be the least active EN period, while the 1620s, 1720s, 1810s, and 1870s are the most active decades. The results herein reveal long-term fluctuations in warm ENSO activity that compare reasonably well with low-frequency variability deduced from other proxy data.


2012 ◽  
Vol 25 (6) ◽  
pp. 1814-1826 ◽  
Author(s):  
Dimitrios Giannakis ◽  
Andrew J. Majda

Abstract An information-theoretic framework is developed to assess the predictive skill and model error in imperfect climate models for long-range forecasting. Here, of key importance is a climate equilibrium consistency test for detecting false predictive skill, as well as an analogous criterion describing model error during relaxation to equilibrium. Climate equilibrium consistency enforces the requirement that long-range forecasting models should reproduce the climatology of prediction observables with high fidelity. If a model meets both climate consistency and the analogous criterion describing model error during relaxation to equilibrium, then relative entropy can be used as an unbiased superensemble measure of the model’s skill in long-range coarse-grained forecasts. As an application, the authors investigate the error in modeling regime transitions in a 1.5-layer ocean model as a Markov process and identify models that are strongly persistent but their predictive skill is false. The general techniques developed here are also useful for estimating predictive skill with model error for Markov models of low-frequency atmospheric regimes.


2018 ◽  
Vol 22 (6) ◽  
pp. 3105-3124 ◽  
Author(s):  
Zilefac Elvis Asong ◽  
Howard Simon Wheater ◽  
Barrie Bonsal ◽  
Saman Razavi ◽  
Sopan Kurkute

Abstract. Drought is a recurring extreme climate event and among the most costly natural disasters in the world. This is particularly true over Canada, where drought is both a frequent and damaging phenomenon with impacts on regional water resources, agriculture, industry, aquatic ecosystems, and health. However, nationwide drought assessments are currently lacking and impacted by limited ground-based observations. This study provides a comprehensive analysis of historical droughts over the whole of Canada, including the role of large-scale teleconnections. Drought events are characterized by the Standardized Precipitation Evapotranspiration Index (SPEI) over various temporal scales (1, 3, 6, and 12 consecutive months, 6 months from April to September, and 12 months from October to September) applied to different gridded monthly data sets for the period 1950–2013. The Mann–Kendall test, rotated empirical orthogonal function, continuous wavelet transform, and wavelet coherence analyses are used, respectively, to investigate the trend, spatio-temporal patterns, periodicity, and teleconnectivity of drought events. Results indicate that southern (northern) parts of the country experienced significant trends towards drier (wetter) conditions although substantial variability exists. Two spatially well-defined regions with different temporal evolution of droughts were identified – the Canadian Prairies and northern central Canada. The analyses also revealed the presence of a dominant periodicity of between 8 and 32 months in the Prairie region and between 8 and 40 months in the northern central region. These cycles of low-frequency variability are found to be associated principally with the Pacific–North American (PNA) and Multivariate El Niño/Southern Oscillation Index (MEI) relative to other considered large-scale climate indices. This study is the first of its kind to identify dominant periodicities in drought variability over the whole of Canada in terms of when the drought events occur, their duration, and how often they occur.


2021 ◽  
pp. 1-38
Author(s):  
Tao Lian ◽  
Dake Chen

AbstractWhile both intrinsic low-frequency atmosphere–ocean interaction and multiplicative burst-like event affect the development of the El Niño–Southern Oscillation (ENSO), the strong nonlinearity in ENSO dynamics has prevented us from separating their relative contributions. Here we propose an online filtering scheme to estimate the role of the westerly wind bursts (WWBs), a type of aperiodic burst-like atmospheric perturbation over the western-central tropical Pacific, in the genesis of the centennial extreme 1997/98 El Niño using the CESM coupled model. This scheme highlights the deterministic part of ENSO dynamics during model integration, and clearly demonstrates that the strong and long-lasting WWB in March 1997 was essential for generating the 1997/98 El Niño. Without this WWB, the intrinsic low-frequency coupling would have only produced a weak warm event in late 1997 similar to the 2014/15 El Niño.


Author(s):  
Andrew Hoell ◽  
Trent W. Ford ◽  
Molly Woloszyn ◽  
Jason A. Otkin ◽  
Jon Eischeid

AbstractCharacteristics and predictability of drought in the Midwestern United States, spanning the Great Plains to the Ohio Valley, at local and regional scales are examined during 1916-2015. Given vast differences in hydroclimatic variability across the Midwest, drought is evaluated in four regions identified using a hierarchical clustering algorithm applied to an integrated drought index based on soil moisture, snow water equivalent, and three-month runoff from land surface models forced by observed analyses. Highlighting the regions containing the Ohio Valley (OV) and Northern Great Plains (NGP), the OV demonstrates a preference for sub-annual droughts, the timing of which can lead to prevalent dry epochs, while the NGP demonstrates a preference for annual-to-multi-annual droughts. Regional drought variations are closely related to precipitation, resulting in a higher likelihood of drought onset or demise during wet seasons: March-November in the NGP and all year in the OV, with a preference for March-May and September-November. Due to the distinct dry season in the NGP, there is a higher likelihood of longer drought persistence, as the NGP is four times more likely to experience drought lasting at least one year compared to the OV. While drought variability in all regions and seasons are related to atmospheric wave trains spanning the Pacific-North American sector, longer-lead predictability is limited to the OV in December-February because it is the only region/season related to slow-varying sea surface temperatures consistent with El Niño-Southern Oscillation. The wave trains in all other regions appear to be generated in the atmosphere, highlighting the importance of internal atmospheric variability in shaping Midwestern drought.


2021 ◽  
Author(s):  
Nobuyuki Utsumi ◽  
F. Joseph Turk ◽  
Ziad. S. Haddad ◽  
Pierre-Emmanuel Kirstetter ◽  
Hyungjun Kim

<p>Passive microwave (MW) observation from low Earth-orbiting satellites is one of the major sources of information for global precipitation monitoring. Although various precipitation retrieval techniques based on passive MW observation have been developed, most of them focus on estimating precipitation rate at near surface height. Vertical profile information of precipitation is meaningful for process-based understanding of precipitation systems. Also, a previous study found that the use of the vertical precipitation profile information can improve sub-hourly surface precipitation estimates (Utsumi et al., 2019).</p><p>This study investigates the precipitation vertical profiles estimated by two passive MW algorithms, i.e., the Emissivity Principal Components (EPC) algorithm developed by authors (Turk et al., 2018; Utsumi et al., 2021) and the Goddard Profiling Algorithm (GPROF). The vertical profiles of condensed water content estimated by the two passive MW algorithms for the Global Precipitation Measurement Microwave Imager (GMI) observations are validation with the GMI + Dual-frequency Precipitation Radar combined algorithm (CMB) for June 2014 – May 2015. The condensed water content profiles estimated by the passive MW algorithms show biases in their magnitude (i.e., EPC underestimates the magnitude by 20 – 50% in the middle-to-high latitudes; GPROF overestimates the magnitude by 20 – 50% in the middle-to-high latitudes and more than 50% overestimation in the tropics). On the other hand, the shapes of the profiles are reproduced well by the passive MW algorithms. The relationship between the estimation performances of surface precipitation rate and vertical profiles are also investigated. It is shown that the error in the profile magnitude shows a clear positive relationship with the surface precipitation error. The estimation performance of the profile shapes also shows connection with the surface precipitation error. This result indicates that physically reasonable connections between the surface precipitation estimate and its associated profiles are achieved to some extent by the passive MW algorithms. This also implies that properly constraining physical parameters of the precipitation profiles would lead to the improvements of the surface precipitation estimates.</p><p>References</p><p>Utsumi, N., Kim, H., Turk, F. J., & Haddad, Ziad. S. (2019). Improving Satellite-Based Subhourly Surface Rain Estimates Using Vertical Rain Profile Information. Journal of Hydrometeorology, 20(5), 1015–1026.</p><p>Turk, F. J., Haddad, Z. S., Kirstetter, P.-E., You, Y., & Ringerud, S. (2018). An observationally based method for stratifying a priori passive microwave observations in a Bayesian-based precipitation retrieval framework. Quarterly Journal of the Royal Meteorological Society, 144(S1), 145–164.</p><p>Utsumi, N., Turk, F. J., Haddad, Z. S., Kirstetter, P.-E., & Kim, H. (2021). Evaluation of Precipitation Vertical Profiles Estimated by GPM-Era Satellite-Based Passive Microwave Retrievals. Journal of Hydrometeorology, 22(1), 95–112.</p>


2009 ◽  
Vol 10 (5) ◽  
pp. 1257-1270 ◽  
Author(s):  
Ruud Hurkmans ◽  
Peter A. Troch ◽  
Remko Uijlenhoet ◽  
Paul Torfs ◽  
Matej Durcik

Abstract Understanding the long-term (interannual–decadal) variability of water availability in river basins is paramount for water resources management. Here, the authors analyze time series of simulated terrestrial water storage components, observed precipitation, and discharge spanning 74 yr in the Colorado River basin and relate them to climate indices that describe variability of sea surface temperature and sea level pressure in the tropical and extratropical Pacific. El Niño–Southern Oscillation (ENSO) indices in winter [January–March (JFM)] are related to winter precipitation as well as to soil moisture and discharge in the lower Colorado River basin. The low-frequency mode of the Pacific decadal oscillation (PDO) appears to be strongly correlated with deep soil moisture. During the negative PDO phase, saturated storage anomalies tend to be negative and the “amplitudes” (mean absolute anomalies) of shallow soil moisture, snow, and discharge are slightly lower compared to periods of positive PDO phases. Predicting interannual variability, therefore, strongly depends on the capability of predicting PDO regime shifts. If indeed a shift to a cool PDO phase occurred in the mid-1990s, as data suggest, the current dry conditions in the Colorado River basin may persist.


Sign in / Sign up

Export Citation Format

Share Document