scholarly journals Numerical Simulations of Radiative Cooling beneath the Anvils of Supercell Thunderstorms

2010 ◽  
Vol 138 (8) ◽  
pp. 3024-3047 ◽  
Author(s):  
Jeffrey Frame ◽  
Paul Markowski

Abstract Numerical simulations of supercell thunderstorms that include parameterized radiative transfer and surface fluxes are performed using the Advanced Regional Prediction System (ARPS) to investigate the effects of anvil shadows on the near-storm environment. If the simulated storm is nearly stationary, the maximum low-level air temperature deficits within the shadows are about 2 K, which is roughly half the cooling found in some previous observations. It is shown that the extinction of downwelling shortwave radiation by the anvil cloud creates a differential in the flux of downwelling shortwave radiation between the sun and the shade that is at least an order of magnitude greater than the differential of any other term in either the surface radiation or the surface energy budgets. The loss of strong solar heating of the model surface within the shaded regions leads to a reduction of surface temperatures and stabilization of the model surface layer beneath the anvil. The reduction in vertical mixing results in a shallow, strongly vertically sheared layer near the surface and calmer near-surface winds, which are limited to regions in the anvil shadow. This difference in radiative heating is shown not to affect the vertical thermodynamic or wind profiles above the near-surface layer (approximately the lowest 500 m). It is also found that these results are highly sensitive to the magnitude of the near-surface winds. If the initial hodograph is shifted such that the simulated storm acquires a substantial eastward propagation speed, the temperature deficit within the shadow is greatly diminished. This is due to both a weaker surface sensible heat flux and less time during which surface cooling and boundary layer stabilization can occur beneath the anvil.

2019 ◽  
Vol 58 (4) ◽  
pp. 797-811 ◽  
Author(s):  
Feimin Zhang ◽  
Zhaoxia Pu

AbstractThis study examines the sensitivity of numerical simulations of near-surface atmospheric conditions to the initial surface albedo and snow depth during an observed ice fog event in the Heber Valley of northern Utah. Numerical simulation results from the mesoscale community Weather Research and Forecasting (WRF) Model are compared with observations from the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program fog field program. It is found that near-surface cooling during the nighttime is significantly underestimated by the WRF Model, resulting in the failure of the model to reproduce the observed fog episode. Meanwhile, the model also overestimates the temperature during the daytime. Nevertheless, these errors could be reduced by increasing the initial surface albedo and snow depth, which act to cool the near-surface atmosphere by increasing the reflection of downward shortwave radiation and decreasing the heating effects from the soil layer. Overall results indicate the important effects of snow representation on the simulation of near-surface atmospheric conditions and highlight the need for snow measurements in the cold season for improved model physics parameterizations.


2017 ◽  
Author(s):  
Antonis Gkikas ◽  
Vincenzo Obiso ◽  
Carlos Pérez García-Pando ◽  
Oriol Jorba ◽  
Nikos Hatzianastassiou ◽  
...  

Abstract. The direct radiative effect (DRE) of 20 intense and widespread dust outbreaks that affected the broader Mediterranean basin during the period March 2000 – February 2013, has been calculated with the regional NMMB-MONARCH model. The DREs have been calculated based on short-term simulations (84 hours) for a domain covering the Sahara and most part of the European continent. At midday, desert dust outbreaks induce locally a NET (shortwave plus longwave) strong atmospheric warming (DREATM values up to 285 Wm−2), a strong surface cooling (DRENETSURF values down to −337 Wm−2) whereas they strongly reduce the downward radiation at the ground (DRESURF values down to −589 Wm−2). During nighttime, reverse effects of smaller magnitude are found. At the top of the atmosphere (TOA), positive (planetary warming) DREs up to 85 Wm−2 are found over highly reflective surfaces while negative (planetary cooling) DREs down to −184 Wm−2 are computed over dark surfaces at noon. Desert dust outbreaks significantly affect the regional radiation budget, with regional clear-sky NET DRE values ranging from −13.9 to 2.6 Wm−2, from −43.6 to 4 Wm−2, from −26.3 to 3.9 Wm−2 and from −3.7 to 28 Wm−2 for TOA, SURF, NETSURF and ATM, respectively. Although the shortwave (SW) DREs are larger than the longwave (LW) ones, the latter are comparable or even larger at TOA, particularly over the Sahara at midday. As a response to the strong surface cooling during daytime, dust outbreaks cause a reduction of the regional sensible and latent heat fluxes by up to 45 Wm−2 and 4 Wm−2, respectively, averaged over land areas of the simulation domain. Dust outbreaks reduce the temperature at 2 meters by up to 4 K during day, whereas a reverse tendency of similar magnitude is found during night. Depending on the vertical distribution of dust loads and time, mineral particles heat (cool) the atmosphere by up to 0.9 K (0.8 K) during daytime (nighttime) within atmospheric dust layers. Beneath and above the dust clouds, mineral particles cool (warm) the atmosphere by up to 1.3 K (1.2 K) at noon (night). When dust radiative effects are taken into account in numerical simulations, the total emitted dust and dust AOD, computed on a regional mean basis, are decreased (negative feedback) by 19.5 % and 6.9 %. The consideration of dust radiative effects in numerical simulations improves the model predictive skills. More specifically, it reduces the model positive and negative biases for the downward surface SW and LW radiation, respectively, with respect to Baseline Surface Radiation Network (BSRN) measurements. In addition, they also reduce the model near-surface (at 2 meters) nocturnal cold biases by up to 0.5 K (regional averages), as well as the model warm biases at 950 and 700 hPa, where the dust concentration is maximized, by up to 0.4 K.


2013 ◽  
Vol 141 (8) ◽  
pp. 2802-2820 ◽  
Author(s):  
Jeffrey Frame ◽  
Paul Markowski

Abstract Numerical simulations of supercell thunderstorms including parameterized radiative transfer and surface fluxes are performed using the Advanced Regional Prediction System (ARPS) model to investigate how low-level air temperature deficits within anvil shadows affect the simulated storms. The maximum temperature deficits within the modeled cloud shadows are 1.5–2.0 K, which is only about half that previously observed. Within the shadows, the loss of strong solar heating cools and stabilizes the near-surface layer, which suppresses vertical mixing and modifies the near-surface vertical wind shear. In a case of a stationary storm, the enhanced easterly shear present beneath the anvil leads to a thinning of the outflow layer and corresponding acceleration of the rear-flank gust front far ahead of the overlying updraft, weakening the low-level mesocyclone. It is further shown that the direct absorption and emission of radiation by clouds does not significantly affect the simulated supercells. Varying the time of day of model initialization does not prevent the simulated storms from weakening. This behavior is mirrored for storms that slowly move along the major axis of the anvil shadow. If the rear-flank gust front moves into the anvil shadow and the updraft moves normal to the shadow (i.e., northward movement of the updraft), cyclic periods of intensification and decay can result, although this result is likely highly dependent on the storm-relative wind profile. If the gust front does not advance into the shaded region (i.e., southward movement), or if the storm moves rapidly, the storm is relatively unaffected by anvil shading because the rear-flank gust front speed and outflow depth remain relatively unchanged.


2017 ◽  
Vol 145 (10) ◽  
pp. 3969-3987 ◽  
Author(s):  
Weizhong Zheng ◽  
Michael Ek ◽  
Kenneth Mitchell ◽  
Helin Wei ◽  
Jesse Meng

This study examines the performance of the NCEP Global Forecast System (GFS) surface layer parameterization scheme for strongly stable conditions over land in which turbulence is weak or even disappears because of high near-surface atmospheric stability. Cases of both deep snowpack and snow-free conditions are investigated. The results show that decoupling and excessive near-surface cooling may appear in the late afternoon and nighttime, manifesting as a severe cold bias of the 2-m surface air temperature that persists for several hours or more. Concurrently, because of negligible downward heat transport from the atmosphere to the land, a warm temperature bias develops at the first model level. The authors test changes to the stable surface layer scheme that include introduction of a stability parameter constraint that prevents the land–atmosphere system from fully decoupling and modification to the roughness-length formulation. GFS sensitivity runs with these two changes demonstrate the ability of the proposed surface layer changes to reduce the excessive near-surface cooling in forecasts of 2-m surface air temperature. The proposed changes prevent both the collapse of turbulence in the stable surface layer over land and the possibility of numerical instability resulting from thermal decoupling between the atmosphere and the surface. The authors also execute and evaluate daily GFS 7-day test forecasts with the proposed changes spanning a one-month period in winter. The assessment reveals that the systematic deficiencies and substantial errors in GFS near-surface 2-m air temperature forecasts are considerably reduced, along with a notable reduction of temperature errors throughout the lower atmosphere and improvement of forecast skill scores for light and medium precipitation amounts.


2013 ◽  
Vol 58 (2) ◽  
pp. 142-150 ◽  
Author(s):  
A.V. Sachenko ◽  
◽  
V.P. Kostylev ◽  
V.G. Litovchenko ◽  
V.G. Popov ◽  
...  

1997 ◽  
Vol 469 ◽  
Author(s):  
V. C. Venezia ◽  
T. E. Haynes ◽  
A. Agarwal ◽  
H. -J. Gossmann ◽  
D. J. Eaglesham

ABSTRACTThe diffusion of Sb and B markers has been studied in vacancy supersaturations produced by MeV Si implantation in float zone (FZ) silicon and bonded etch-back silicon-on-insulator (BESOI) substrates. MeV Si implantation produces a vacancy supersaturated near-surface region and an interstitial-rich region at the projected ion range. Transient enhanced diffusion (TED) of Sb in the near surface layer was observed as a result of a 2 MeV Si+, 1×1016/cm2, implant. A 4× larger TED of Sb was observed in BESOI than in FZ silicon, demonstrating that the vacancy supersaturation persists longer in BESOI than in FZ. B markers in samples with MeV Si implant showed a factor of 10× smaller diffusion relative to markers without the MeV Si+ implant. This data demonstrates that a 2 MeV Si+ implant injects vacancies into the near surface region.


2015 ◽  
Vol 19 (2) ◽  
pp. 1-18 ◽  
Author(s):  
Ayan H. Chaudhuri ◽  
Rui M. Ponte

Abstract The authors examine five recent reanalysis products [NCEP Climate Forecast System Reanalysis (CFSR), Modern-Era Retrospective Analysis for Research and Applications (MERRA), Japanese 25-year Reanalysis Project (JRA-25), Interim ECMWF Re-Analysis (ERA-Interim), and Arctic System Reanalysis (ASR)] for 1) trends in near-surface radiation fluxes, air temperature, and humidity, which are important indicators of changes within the Arctic Ocean and also influence sea ice and ocean conditions, and 2) fidelity of these atmospheric fields and effects for an extreme event: namely, the 2007 ice retreat. An analysis of trends over the Arctic for the past decade (2000–09) shows that reanalysis solutions have large spreads, particularly for downwelling shortwave radiation. In many cases, the differences in significant trends between the five reanalysis products are comparable to the estimated trend within a particular product. These discrepancies make it difficult to establish a consensus on likely changes occurring in the Arctic solely based on results from reanalyses fields. Regarding the 2007 ice retreat event, comparisons with remotely sensed estimates of downwelling radiation observations against these reanalysis products present an ambiguity. Remotely sensed observations from a study cited herewith suggest a large increase in downwelling summertime shortwave radiation and decrease in downwelling summertime longwave radiation from 2006 and 2007. On the contrary, the reanalysis products show only small gains in summertime shortwave radiation, if any; however, all the products show increases in downwelling longwave radiation. Thus, agreement within reanalysis fields needs to be further checked against observations to assess possible biases common to all products.


Sign in / Sign up

Export Citation Format

Share Document