scholarly journals An Open Boundary Condition for Numerical Coastal Circulation Models

2011 ◽  
Vol 41 (12) ◽  
pp. 2363-2380 ◽  
Author(s):  
Peifeng Ma ◽  
Ole Secher Madsen

Abstract Open boundaries (OBs) are usually unavoidable in numerical coastal circulation simulations. At OBs, an appropriate open boundary condition (OBC) is required so that outgoing waves freely pass to the exterior without creating reflections back into the interior of the computational domain. In this paper, the authors derive, based on the shallow-water equations including bottom friction and neglecting Coriolis effect and by means of nonlinear characteristic analysis, an OBC formulation with two predictive parameters, phase speed cr, and decay time Tf. Simple idealized tests are performed to demonstrate the proposed OBC’s excellent skills in elimination of unwanted reflections at OBs when the motion is periodic, as assumed in its theoretical derivation. It turns out that the formulas for the two OBC parameters become independent of period in the limit of small friction and/or short period. This feature is used to derive an OBC applicable when information about the typical period of the motion to be simulated is unavailable. Simple, idealized tests of this period independent OBC demonstrate its ability to afford excellent results, even when the limitations inherent in its derivation are exceeded. Finally, the OBC is applied in more realistic simulations, including Coriolis effects of 2D tidal flows, and is shown to yield excellent results, especially for residual flows.

2011 ◽  
Vol 1 (32) ◽  
pp. 30 ◽  
Author(s):  
Peifeng Ma ◽  
Ole Secher Madsen

Open boundaries (OBs) are usually unavoidable in numerical coastal circulation simulations. At OBs, appropriate open boundary conditions (OBCs) are required and a good OBC should be able to let outgoing waves freely pass to the exterior of a computational domain without creating reflections at the OBs. In the present study, a methodology has been developed to predict two parameters, phase speed c_r and decay time T_f, in a standard OBC formulation, so that the OBC is significantly improved compared to commonly used existing OBCs with specified c_r and T_f. For the conditions where wave period is unknown, the OBC with approximated c_r and T_f may be applied and a test reveals that this OBC is able to yield good results in typical coastal flow conditions. In addition, a Swing-Door Boundary Condition (SDBC) is proposed and tested for application at an offshore open boundary where both incoming and outgoing waves exist.


Author(s):  
Alaa M. Mansour ◽  
A. Neil Williams

In this paper, a three dimensional numerical wave tank model has been used to simulate fully nonlinear wave diffraction by a uniform vertical circular cylinder. The cylinder has been placed in a narrow flume of a width equal to four times the cylinder diameter. The runup and the hydrodynamic forces on the cylinder has been compared to the results when a similar cylinder is placed in a similar tank but with a width equal to sixteen times the cylinder diameter. The model has been further extended by applying an open boundary condition to the side-walls to simulate an infinitely wide tank and hence more realistically simulate open sea condition. The proposed open boundary condition in the lateral direction is based on coupling of two prescribed boundary conditions, namely, numerical beach and Orlanski boundary conditions. The use of this coupled boundary condition has been found to be very efficient in eliminating any significant wave reflection from the side-walls back into the computational domain.


1984 ◽  
Vol 1 (19) ◽  
pp. 58
Author(s):  
Y.P. Sheng ◽  
H. Lee Butler

A simple open boundary condition for limiting the computational domain in tidal simulations is presented. In modeling the impact of proposed coastal projects with a limited-area model, problems due to undesired reflection of gravity waves at open boundaries often occur. The boundary condition presented herein eliminates these problems in many instances and can be easily incorporated into a wide variety of models. The adapted procedure permits representation of appropriate forcing conditions while allowing propagation of internally-generated disturbances out of the open boundaries. Applications to real world engineering problems are presented.


2011 ◽  
Vol 22 (03) ◽  
pp. 271-281 ◽  
Author(s):  
SHINJI KUKIDA ◽  
JUN TANIMOTO ◽  
AYA HAGISHIMA

Many cellular automaton models (CA models) have been applied to analyze traffic flow. When analyzing multilane traffic flow, it is important how we define lane-changing rules. However, conventional models have used simple lane-changing rules that are dependent only on the distance from neighboring vehicles. We propose a new lane-changing rule considering velocity differences with neighboring vehicles; in addition, we embed the rules into a variant of the Nagel–Schreckenberg (NaSch) model, called the S-NFS model, by considering an open boundary condition. Using numerical simulations, we clarify the basic characteristics resulting from different assumptions with respect to lane changing.


Sign in / Sign up

Export Citation Format

Share Document