scholarly journals 100 Years of the Ocean General Circulation

2018 ◽  
Vol 59 ◽  
pp. 7.1-7.32 ◽  
Author(s):  
Carl Wunsch ◽  
Raffaele Ferrari

Abstract The central change in understanding of the ocean circulation during the past 100 years has been its emergence as an intensely time-dependent, effectively turbulent and wave-dominated, flow. Early technologies for making the difficult observations were adequate only to depict large-scale, quasi-steady flows. With the electronic revolution of the past 50+ years, the emergence of geophysical fluid dynamics, the strongly inhomogeneous time-dependent nature of oceanic circulation physics finally emerged. Mesoscale (balanced), submesoscale oceanic eddies at 100-km horizontal scales and shorter, and internal waves are now known to be central to much of the behavior of the system. Ocean circulation is now recognized to involve both eddies and larger-scale flows with dominant elements and their interactions varying among the classical gyres, the boundary current regions, the Southern Ocean, and the tropics.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Mattia Marchio ◽  
Harold E. Brooks

AbstractGlobally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing.


Author(s):  
Hsien-Wang Ou

This paper considers the general ocean circulation within the thermodynamical closure of our climate theory, which aims to deduce the generic climate state from first principles. The preceding papers of the theory have reduced planetary fluids to warm/cold masses and determined their bulk thermal properties, which provide prior constraints for the derivation of the upper-bound circulation when the potential vorticity is homogenized in moving masses. In a companion paper on the atmosphere, this upper bound is seen to reproduce the prevailing wind, forsaking therefore previous discordant explanations of the easterly trade and the polar jet stream. In this paper on the ocean, we again show that this upper bound may replicate broad features of the observed circulation, including a western-intensified subtropical gyre and a counter-rotating tropical gyre feeding the equatorial undercurrent. Together, we posit that PV homogenization may provide a unifying dynamical principle of the large-scale planetary circulation, which may be interpreted as the maximum macroscopic motion extractable by microscopic stirring --- within the confine of the thermal differentiation.


2021 ◽  
Author(s):  
Rishav Goyal ◽  
Martin Jucker ◽  
Alex Sen Gupta ◽  
Harry Hendon ◽  
Matthew England

Abstract A distinctive feature of the Southern Hemisphere (SH) extratropical atmospheric circulation is the quasi-stationary zonal wave 3 (ZW3) pattern, characterized by three high and three low-pressure centers around the SH extratropics. This feature is present in both the mean atmospheric circulation and its variability on daily, seasonal and interannual timescales. While the ZW3 pattern has significant impacts on meridional heat transport and Antarctic sea ice extent, the reason for its existence remains uncertain, although it has long been assumed to be linked to the existence of three major land masses in the SH extratropics. Here we use an atmospheric general circulation model to show that the stationery ZW3 pattern is instead driven by zonal asymmetric deep atmospheric convection in the tropics, with little to no role played by the orography or land masses in the extratropics. Localized regions of deep convection in the tropics form a local Hadley cell which in turn creates a wave source in the subtropics that excites a poleward and eastward propagating wave train which forms stationary waves in the SH high latitudes. Our findings suggest that changes in tropical deep convection, either due to natural variability or climate change, will impact the zonal wave 3 pattern, with implications for Southern Hemisphere climate, ocean circulation, and sea-ice.


2007 ◽  
Vol 37 (4) ◽  
pp. 896-907 ◽  
Author(s):  
Alexey Fedorov ◽  
Marcelo Barreiro ◽  
Giulio Boccaletti ◽  
Ronald Pacanowski ◽  
S. George Philander

Abstract The impacts of a freshening of surface waters in high latitudes on the deep, slow, thermohaline circulation have received enormous attention, especially the possibility of a shutdown in the meridional overturning that involves sinking of surface waters in the northern Atlantic Ocean. A recent study by Fedorov et al. has drawn attention to the effects of a freshening on the other main component of the oceanic circulation—the swift, shallow, wind-driven circulation that varies on decadal time scales and is closely associated with the ventilated thermocline. That circulation too involves meridional overturning, but its variations and critical transitions affect mainly the Tropics. A surface freshening in mid- to high latitudes can deepen the equatorial thermocline to such a degree that temperatures along the equator become as warm in the eastern part of the basin as they are in the west, the tropical zonal sea surface temperature gradient virtually disappears, and permanently warm conditions prevail in the Tropics. In a model that has both the wind-driven and thermohaline components of the circulation, which factors determine the relative effects of a freshening on the two components and its impact on climate? Studies with an idealized ocean general circulation model find that vertical diffusivity is one of the critical parameters that affect the relative strength of the two circulation components and hence their response to a freshening. The spatial structure of the freshening and imposed meridional temperature gradients are other important factors.


2007 ◽  
Vol 64 (6) ◽  
pp. 1959-1976 ◽  
Author(s):  
Dargan M. W. Frierson

In this paper, the effect of a simple convection scheme on the zonally averaged tropical general circulation is examined within an idealized moist GCM to obtain broad classifications of the influence of convection on the Tropics. This is accomplished with a simplified convection scheme in the style of Betts and Miller. The scheme is utilized in a moist GCM with simplified physical parameterizations (gray radiation, with zonally symmetric, slab mixed layer ocean boundary conditions). Comparisons are made with simulations without a convection scheme [i.e., with large-scale condensation (LSC) only], with the moist convective adjustment (MCA) parameterization, and with various formulations and parameter sets with a simplified Betts–Miller (SBM) scheme. With the control run using the SBM scheme, the Tropics become quieter and less dependent on horizontal resolution as compared with the LSC or MCA simulations. The Hadley circulation mass transport is significantly reduced with the SBM scheme, as is the ITCZ precipitation. An important factor determining this behavior is the parameterization of shallow convection: without shallow convection, the convection scheme is largely ineffective at preventing convection from occurring at the grid scale. The sensitivities to convection scheme parameters are also examined. The simulations are remarkably insensitive to the convective relaxation time, and only mildly sensitive to the relative humidity of the reference profile, provided significant large-scale condensation is not allowed to occur. The changes in the zonally averaged tropical circulation that occur in all the simulations are understood based on the convective criteria of the schemes and the gross moist stability of the atmosphere.


2007 ◽  
Vol 64 (1) ◽  
pp. 228-238 ◽  
Author(s):  
Isaac M. Held ◽  
Ming Zhao ◽  
Bruce Wyman

Abstract The behavior of a GCM column physics package in a nonrotating, doubly periodic, homogeneous setting with prescribed SSTs is examined. This radiative–convective framework is proposed as a useful tool for studying some of the interactions between convection and larger-scale dynamics and the effects of differing modeling assumptions on convective organization and cloud feedbacks. For the column physics utilized here, from the Geophysical Fluid Dynamics Laboratory (GFDL) AM2 model, many of the properties of the homogeneous, nonrotating model are closely tied to the fraction of precipitation that is large-scale, rather than convective. Significant large-scale precipitation appears above a critical temperature and then increases with further increases in temperature. The amount of large-scale precipitation is a function of horizontal resolution and can also be controlled by modifying the convection scheme, as is illustrated here by modifying assumptions concerning entrainment into convective plumes. Significant similarities are found between the behavior of the homogeneous model and that of the Tropics of the parent GCM when ocean temperatures are increased and when the convection scheme is modified.


2021 ◽  
Vol 9 (10) ◽  
pp. 1090
Author(s):  
Hsien-Wang Ou

This paper considers the general ocean circulation (GOC) within the thermodynamical closure of our climate theory, which aims to deduce the generic climate state from first principles. The preceding papers of this theory have reduced planetary fluids to warm/cold masses and determined their bulk properties, which provide prior constraints for the derivation of the upper-bound circulation when the potential vorticity (PV) is homogenized in moving masses. In a companion paper on the general atmosphere circulation (GAC), this upper bound is seen to reproduce the observed prevailing wind, therefore forsaking discordant explanations of the easterly trade winds and the polar jet stream. In this paper on the ocean, we again show that this upper bound may replicate broad features of the observed circulation, including a western-intensified subtropical gyre and a counter-rotating tropical gyre feeding the equatorial undercurrent. Since PV homogenization has short-circuited the wind curl, the Sverdrup dynamics does not need to be the sole progenitor of the western intensification, as commonly perceived. Together with GAC, we posit that PV homogenization provides a unifying dynamical principle of the large-scale planetary circulation, which may be interpreted as the maximum macroscopic motion extractable by microscopic stirring, within the confines of thermal differentiation.


2020 ◽  
Author(s):  
Maryam Mirzaloo ◽  
Dirk Nürnberg ◽  
Markus Kienast ◽  
Jeroen van der Lubbe

<p>The understanding of the past changes in this critical area of oceanic circulation will be beneficial to predict future climate conditions and their related socio-economic impacts. Sediment cores recovered from the western flank of the Iceland-Faroe Ridge (IFR; P457-905 and -909) provide unique archives to reconstruct changes in the Iceland-Scotland overflow water (ISOW), an important component of the Atlantic Meridional Overturning Circulation (AMOC) over the last 55-6 ka BP. We provide high-resolution records of lithogenic grain-size and XRF bulk chemistry on millennial timescales. The age models of both cores have been constrained by radiocarbon datings of planktonic foraminifera and distinct tephra layers, which include the well-known Faroe-Marine-Ash-Zones (FMAZ) II and III. Both grain-size and XRF bulk chemistry (Zr/Rb and Ti/K) reveal prominent Dansgaard-Oeschger sedimentary cycles, which reflect considerable changes in near-bottom current strength and sediment transport/deposition. The transition between cold Greenland Stadials (GSs) and warm Greenland Interstadials (GIs) occur in typical, recurring sedimentation patterns. The GIs are characterized by relatively strong bottom currents and the transport/deposition of basaltic (Ti-rich) silts from local volcanic sources resembling the modern ocean circulation pattern. In contrast, fine grained felsic (K-rich) sediments were deposited during GSs, when the ISOW was weak. In particular, the Heinrich (like) Stadials HS1 and HS2 stand out as intervals of very fine felsic sediment deposition and hence, slackened bottom currents. The bottom currents appear to progressively strengthen throughout the GIs, and sharply decline towards the GSs. This pattern contrasts with records from north of the IFR, which might be explained by a diminishing contribution of the flow cascading over the IFR. Together, these new records show strong changes in bottom current dynamics related to the Iceland-Scotland overflow, which has a strong influence on the past and modern climate of the North Atlantic Region. However, climate change is an interdisciplinary field of research. HOSST-TOSST transatlantic interdisciplinary research program provides the unique opportunity for constructive communication and collaboration among scientists with different skills filling knowledge gaps and bridging the earth sciences with social and economic disciplines. Such interdisciplinary programs at early stages in an academic career is necessary to move and encourage the new generation of the scientific community toward a tradition of broad‐scale interactions.</p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p>


2009 ◽  
Vol 22 (15) ◽  
pp. 4066-4082 ◽  
Author(s):  
Andrew Mc C. Hogg ◽  
William K. Dewar ◽  
Pavel Berloff ◽  
Sergey Kravtsov ◽  
David K. Hutchinson

Abstract Small-scale variation in wind stress due to ocean–atmosphere interaction within the atmospheric boundary layer alters the temporal and spatial scale of Ekman pumping driving the double-gyre circulation of the ocean. A high-resolution quasigeostrophic (QG) ocean model, coupled to a dynamic atmospheric mixed layer, is used to demonstrate that, despite the small spatial scale of the Ekman-pumping anomalies, this phenomenon significantly modifies the large-scale ocean circulation. The primary effect is to decrease the strength of the nonlinear component of the gyre circulation by approximately 30%–40%. This result is due to the highest transient Ekman-pumping anomalies destabilizing the flow in a dynamically sensitive region close to the western boundary current separation. The instability of the jet produces a flux of potential vorticity between the two gyres that acts to weaken both gyres.


2011 ◽  
Vol 24 (21) ◽  
pp. 5652-5670 ◽  
Author(s):  
Thierry Penduff ◽  
Mélanie Juza ◽  
Bernard Barnier ◽  
Jan Zika ◽  
William K. Dewar ◽  
...  

Abstract This paper evaluates in a realistic context the local contributions of direct atmospheric forcing and intrinsic oceanic processes on interannual sea level anomalies (SLAs). A ¼° global ocean–sea ice general circulation model, driven over 47 yr by the full range of atmospheric time scales, is quantitatively assessed against altimetry and shown to reproduce most observed features of the interannual SLA variability from 1993 to 2004. Comparing this simulation with a second driven only by the climatological annual cycle reveals that the intrinsic part of the total interannual SLA variance exceeds 40% over half of the open-ocean area and exceeds 80% over one-fifth of it. This intrinsic contribution is particularly strong in eddy-active regions (more than 70%–80% in the Southern Ocean and western boundary current extensions) as predicted by idealized studies, as well as within the 20°–35° latitude bands. The atmosphere directly forces most of the interannual SLA variance at low latitudes and in most midlatitude eastern basins, in particular north of about 40°N in the Pacific. The interannual SLA variance is almost entirely due to intrinsic processes south of the Antarctic Circumpolar Current in the Indian Ocean sector, while half of this variance is forced by the atmosphere north of it. The same simulations were performed and analyzed at 2° resolution as well: switching to this laminar regime yields a comparable forced variability (large-scale distribution and magnitude) but almost suppresses the intrinsic variability. This likely explains why laminar ocean models largely underestimate the interannual SLA variance.


Sign in / Sign up

Export Citation Format

Share Document