scholarly journals The UK-China Climate Science to Service Partnership

Author(s):  
Adam A. Scaife ◽  
Elizabeth Good ◽  
Ying Sun ◽  
Zhongwei Yan ◽  
Nick Dunstone ◽  
...  

AbstractWe present results from the first 6 years of this major UK government funded project to accelerate and enhance collaborative research and development in climate science, forge a strong strategic partnership between UK and Chinese climate scientists and demonstrate new climate services developed in partnership. The development of novel climate services is described in the context of new modelling and prediction capability, enhanced understanding of climate variability and change, and improved observational datasets. Selected highlights are presented from over three hundred peer reviewed studies generated jointly by UK and Chinese scientists within this project. We illustrate new observational datasets for Asia and enhanced capability through training workshops on the attribution of climate extremes to anthropogenic forcing. Joint studies on the dynamics and predictability of climate have identified new opportunities for skilful predictions of important aspects of Chinese climate such as East Asian Summer Monsoon rainfall. In addition, the development of improved modelling capability has led to profound changes in model computer codes and climate model configurations, with demonstrable increases in performance. We also describe the successes and difficulties in bridging the gap between fundamental climate research and the development of novel real time climate services. Participation of dozens of institutes through sub-projects in this programme, which is governed by the Met Office Hadley Centre, the China Meteorological Administration and the Institute of Atmospheric Physics, is creating an important legacy for future collaboration in climate science and services.

2007 ◽  
Vol 22 (2) ◽  
pp. 204-217 ◽  
Author(s):  
P. S. Lucio ◽  
F. C. Conde ◽  
A. M. Ramos

This article attempts to quantify the spatial uncertainties associated with extreme temperature’s response, by assessing data derived from climate model. This is undertaken by a comparison of the spatial pattern of a long-term time-series aggregation (1960/61-1989/90) for extreme temperatures simulated by a particular GCM (the UK Met Office - Hadley Centre climate model, HadCM3) to that of the USA NCAR NCEP Reanalyses, which are considered as ‘truth’, over the MICE (Modelling the Impacts of Climate Extremes - EU Project) spatial domain. Since evaluation of models is crucial to assessing future scenarios, the aim of this study is to investigate whether the extreme values predicted by the HadCM3 climate model can simulate those produced by NCEP Reanalyses, assuming that the extremes of both models are realizations of the same spatial stochastic process. To get more useful information about the uncertainties surrounding spatial climate projection, one also has to analyze the pattern of temperature extremes in terms of their anomalies. A common technical issue in the assessment of numerical spatial models is based on the Principal Components Analysis and Bayesian Classification for spatial pattern recognition. These methodologies are very important and useful for guiding an evolutionary statistical model-building process. This study leads to the conclusion that the HadCM3 Simulations do not realistically reproduce the NCEP Reanalyses, despite the fact that the climatology of extremes has demonstrated very similar spatial patterns. It is likely therefore that such instability may persist in the future.


2020 ◽  
Author(s):  
Jennifer Weeks ◽  
Stacey New ◽  
Tyrone Dunbar ◽  
Nicola Golding ◽  
Chris Hewitt

<p>There is an increasing demand for tailored climate information to feed into decision making. At the UK Met Office, we are responding to this need through work in the Climate Science for Services Partnership (CSSP) China, a scientific research programme in collaboration with the China Meteorological Administration and the Institute of Atmospheric Physics at the Chinese Academy of Sciences. We are applying a full cycle of prototyping to a range of new and existing climate services for priority sectors in China, such as food security and urban hotspot satellite mapping, using leading climate research to co-develop useful and useable climate services.</p><p>Recent research in food security has produced a toolkit for risk to crop production across multiple regions in China. We are now evolving the accessibility and communication of this information with decision-makers to enable delivery of this service to the appropriate end-user groups. We are also working to tailor urban hotspot satellite data to specific users, for instance the health sector, to identify and inform vulnerable populations. Through appropriate user engagement, such as workshops, surveys and interviews, we are exploring specific stakeholder requirements to pull-through science to services. This work has wider implications in having the potential to feed into important adaptation decisions and to demonstrate the effectiveness of the cycle of prototyping.</p>


2017 ◽  
Vol 30 (17) ◽  
pp. 6927-6944 ◽  
Author(s):  
A. Hannachi ◽  
N. Trendafilov

Conventional analysis methods in weather and climate science (e.g., EOF analysis) exhibit a number of drawbacks including scaling and mixing. These methods focus mostly on the bulk of the probability distribution of the system in state space and overlook its tail. This paper explores a different method, the archetypal analysis (AA), which focuses precisely on the extremes. AA seeks to approximate the convex hull of the data in state space by finding “corners” that represent “pure” types or archetypes through computing mixture weight matrices. The method is quite new in climate science, although it has been around for about two decades in pattern recognition. It encompasses, in particular, the virtues of EOFs and clustering. The method is presented along with a new manifold-based optimization algorithm that optimizes for the weights simultaneously, unlike the conventional multistep algorithm based on the alternating constrained least squares. The paper discusses the numerical solution and then applies it to the monthly sea surface temperature (SST) from HadISST and to the Asian summer monsoon (ASM) using sea level pressure (SLP) from ERA-40 over the Asian monsoon region. The application to SST reveals, in particular, three archetypes, namely, El Niño, La Niña, and a third pattern representing the western boundary currents. The latter archetype shows a particular trend in the last few decades. The application to the ASM SLP anomalies yields archetypes that are consistent with the ASM regimes found in the literature. Merits and weaknesses of the method along with possible future development are also discussed.


2021 ◽  
Vol 35 (1) ◽  
pp. 64-76
Author(s):  
Sarah Opitz-Stapleton ◽  
Roger Street ◽  
Qian Ye ◽  
Jiarui Han ◽  
Chris D. Hewitt

AbstractThe Climate Science for Service Partnership China (CSSP China) is a joint program between China and the United Kingdom to build the basis for climate services to support the weather and climate resilient economic development and welfare in China. Work Package 5 (WP5) provides the translational science on identification of: different users and providers, and their mandates; factors contributing to communication gaps and capacities between various users and providers; and mechanisms to work through such issues to develop and/or evolve a range of climate services. Key findings to emerge include that users from different sectors have varying capacities, requirements, and needs for information in their decision contexts, with a current strong preference for weather information. Separating climate and weather services when engaging users is often not constructive. Furthermore, there is a need to move to a service delivery model that is more user-driven and science informed; having sound climate science is not enough to develop services that are credible, salient, reliable, or timely for diverse user groups. Greater investment in building the capacity of the research community supporting and providing climate services to conduct translational sciences and develop regular user engagement processes is much needed. Such a move would help support the China Meteorological Administration’s (CMA) ongoing efforts to improve climate services. It would also assist in potentially linking a broader group of “super” users who currently act as providers and purveyors of climate services because they find the existing offerings are not relevant to their needs or cannot access CMA’s services.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suvarna Fadnavis ◽  
Rolf Müller ◽  
Tanusri Chakraborty ◽  
T. P. Sabin ◽  
Anton Laakso ◽  
...  

AbstractThe Indian summer monsoon rainfall (ISMR) is vital for the livelihood of millions of people in the Indian region; droughts caused by monsoon failures often resulted in famines. Large volcanic eruptions have been linked with reductions in ISMR, but the responsible mechanisms remain unclear. Here, using 145-year (1871–2016) records of volcanic eruptions and ISMR, we show that ISMR deficits prevail for two years after moderate and large (VEI > 3) tropical volcanic eruptions; this is not the case for extra-tropical eruptions. Moreover, tropical volcanic eruptions strengthen El Niño and weaken La Niña conditions, further enhancing Indian droughts. Using climate-model simulations of the 2011 Nabro volcanic eruption, we show that eruption induced an El Niño like warming in the central Pacific for two consecutive years due to Kelvin wave dissipation triggered by the eruption. This El Niño like warming in the central Pacific led to a precipitation reduction in the Indian region. In addition, solar dimming caused by the volcanic plume in 2011 reduced Indian rainfall.


Author(s):  
Weijia Qian ◽  
Howard H. Chang

Health impact assessments of future environmental exposures are routinely conducted to quantify population burdens associated with the changing climate. It is well-recognized that simulations from climate models need to be bias-corrected against observations to estimate future exposures. Quantile mapping (QM) is a technique that has gained popularity in climate science because of its focus on bias-correcting the entire exposure distribution. Even though improved bias-correction at the extreme tails of exposure may be particularly important for estimating health burdens, the application of QM in health impact projection has been limited. In this paper we describe and apply five QM methods to estimate excess emergency department (ED) visits due to projected changes in warm-season minimum temperature in Atlanta, USA. We utilized temperature projections from an ensemble of regional climate models in the North American-Coordinated Regional Climate Downscaling Experiment (NA-CORDEX). Across QM methods, we estimated consistent increase in ED visits across climate model ensemble under RCP 8.5 during the period 2050 to 2099. We found that QM methods can significantly reduce between-model variation in health impact projections (50–70% decreases in between-model standard deviation). Particularly, the quantile delta mapping approach had the largest reduction and is recommended also because of its ability to preserve model-projected absolute temporal changes in quantiles.


2014 ◽  
Vol 27 (8) ◽  
pp. 2931-2947 ◽  
Author(s):  
Ed Hawkins ◽  
Buwen Dong ◽  
Jon Robson ◽  
Rowan Sutton ◽  
Doug Smith

Abstract Decadal climate predictions exhibit large biases, which are often subtracted and forgotten. However, understanding the causes of bias is essential to guide efforts to improve prediction systems, and may offer additional benefits. Here the origins of biases in decadal predictions are investigated, including whether analysis of these biases might provide useful information. The focus is especially on the lead-time-dependent bias tendency. A “toy” model of a prediction system is initially developed and used to show that there are several distinct contributions to bias tendency. Contributions from sampling of internal variability and a start-time-dependent forcing bias can be estimated and removed to obtain a much improved estimate of the true bias tendency, which can provide information about errors in the underlying model and/or errors in the specification of forcings. It is argued that the true bias tendency, not the total bias tendency, should be used to adjust decadal forecasts. The methods developed are applied to decadal hindcasts of global mean temperature made using the Hadley Centre Coupled Model, version 3 (HadCM3), climate model, and it is found that this model exhibits a small positive bias tendency in the ensemble mean. When considering different model versions, it is shown that the true bias tendency is very highly correlated with both the transient climate response (TCR) and non–greenhouse gas forcing trends, and can therefore be used to obtain observationally constrained estimates of these relevant physical quantities.


2015 ◽  
Vol 8 (7) ◽  
pp. 1943-1954 ◽  
Author(s):  
D. R. Feldman ◽  
W. D. Collins ◽  
J. L. Paige

Abstract. Top-of-atmosphere (TOA) spectrally resolved shortwave reflectances and long-wave radiances describe the response of the Earth's surface and atmosphere to feedback processes and human-induced forcings. In order to evaluate proposed long-duration spectral measurements, we have projected 21st Century changes from the Community Climate System Model (CCSM3.0) conducted for the Intergovernmental Panel on Climate Change (IPCC) A2 Emissions Scenario onto shortwave reflectance spectra from 300 to 2500 nm and long-wave radiance spectra from 2000 to 200 cm−1 at 8 nm and 1 cm−1 resolution, respectively. The radiative transfer calculations have been rigorously validated against published standards and produce complementary signals describing the climate system forcings and feedbacks. Additional demonstration experiments were performed with the Model for Interdisciplinary Research on Climate (MIROC5) and Hadley Centre Global Environment Model version 2 Earth System (HadGEM2-ES) models for the Representative Concentration Pathway 8.5 (RCP8.5) scenario. The calculations contain readily distinguishable signatures of low clouds, snow/ice, aerosols, temperature gradients, and water vapour distributions. The goal of this effort is to understand both how climate change alters reflected solar and emitted infrared spectra of the Earth and determine whether spectral measurements enhance our detection and attribution of climate change. This effort also presents a path forward to understand the characteristics of hyperspectral observational records needed to confront models and inline instrument simulation. Such simulation will enable a diverse set of comparisons between model results from coupled model intercomparisons and existing and proposed satellite instrument measurement systems.


Sign in / Sign up

Export Citation Format

Share Document