scholarly journals Hydrological Impacts of Deforestation on the Southeast Tibetan Plateau

2007 ◽  
Vol 11 (15) ◽  
pp. 1-18 ◽  
Author(s):  
Xuefeng Cui ◽  
Hans-F. Graf ◽  
Baerbel Langmann ◽  
Wen Chen ◽  
Ronghui Huang

Abstract The hydrological impact of forest removal on the southeast Tibetan Plateau during the second half of the last century is investigated in this study using an atmospheric general circulation model. The effects of deforestation are investigated by examining the differences between the forest replacement and control experiments. Model results demonstrate that deforestation of the southeast Tibetan Plateau would influence the local and the remote climate as well. It would lead to decreased transpiration and increased summer precipitation in the deforested area and a wetter and warmer climate on the Tibetan Plateau in summer. This may produce more runoff into the rivers originating from the Tibetan Plateau and worsen flooding disasters in the downstream areas. The numerical experiments also show that deforestation would remotely impact Asian climate, and even global climate, although the statistical significance is small. A strong drought is found at middle and lower reaches of the Yellow River, where livelihoods and economics have suffered from recent droughts. Ecosystem research on the Tibetan Plateau is a relatively new topic and needs further interdisciplinary investigation.

2017 ◽  
Vol 30 (4) ◽  
pp. 1259-1272 ◽  
Author(s):  
Zhengguo Shi ◽  
Yingying Sha ◽  
Xiaodong Liu

Abstract Topographic insulation is one of the primary origins for the influence of the Tibetan Plateau (TP) on Asian climate. The Yunnan–Guizhou (YG) Plateau, at the southeastern margin of the TP, is known to block the northern branch of the Indian monsoon circulation in summer. However, it is an open question whether this blocking feeds back to the monsoon. In this study, the effect of the YG topography on the Indian monsoon and its comparison with that of the TP were evaluated using general circulation model experiments. The results showed that the TP strengthens the monsoon precipitation, especially during the onset. However, the YG topography significantly weakens the monsoon. With the YG topography, strengthened low-level airflow around the YG Plateau induces anomalous anticyclonic winds to the southwest, and the changes remodulate the whole circulation structure over Asia. As a result, the Indian monsoon becomes weakened from the Bay of Bengal to the Indian subcontinent and Arabian Sea, as does the associated precipitation. In addition, the YG topography affects the anomalous warming center over the TP and the precipitation during the monsoon onset. The YG-reduced summer precipitation occupied approximately one-third of the total increment compared to the entire TP. The Indian monsoon weakened by YG topography distinctly opposes the traditional paleoclimatic viewpoint that all of the TP topography contributes to the monsoon strengthening. In fact, the climatic effect of the TP depends closely upon both its central and marginal topography, and the topography of its subterrains does not necessarily play a similar role.


2013 ◽  
Vol 70 (10) ◽  
pp. 3288-3301 ◽  
Author(s):  
Hyo-Seok Park ◽  
Shang-Ping Xie ◽  
Seok-Woo Son

Abstract The orographic effect of the Tibetan Plateau on atmospheric poleward heat transport is investigated using an atmospheric general circulation model. The linear interference between the Tibetan Plateau–induced winds and the eddy temperature field associated with the land–sea thermal contrast is a key factor for enhancing the poleward stationary eddy heat transport. Specifically, Tibetan Plateau–induced stationary waves produce northerlies over the cold eastern Eurasian continent, leading to a poleward heat transport. In another hot spot of stationary eddy heat transport over the eastern North Pacific, Tibetan Plateau–induced stationary waves transport relatively warm marine air northward. In an experiment where the Tibetan Plateau is removed, the poleward heat transport is mostly accomplished by transient eddies, similar to the Southern Hemisphere. In the presence of the Tibetan Plateau, the enhanced stationary eddy heat transport is offset by a comparable reduction in transient eddy heat transport. This compensation between stationary and transient eddy heat transport is seen in observed interannual variability. Both the model and observations indicate that an enhanced poleward heat transport by stationary waves weakens transient eddies by decreasing the meridional temperature gradient and the associated westerlies in midlatitudes.


2010 ◽  
Vol 138 (6) ◽  
pp. 2375-2384 ◽  
Author(s):  
Qing Bao ◽  
Jing Yang ◽  
Yimin Liu ◽  
Guoxiong Wu ◽  
Bin Wang

Abstract Anomalous warming occurred over the Tibetan Plateau (TP) before and during the disastrous freezing rain and heavy snow hitting central and southern China in January 2008. The relationship between the TP warming and this extreme event is investigated with an atmospheric general circulation model. Two perpetual runs were performed. One is forced by the climatological mean sea surface temperatures in January as a control run; and the other has the same model setting as the control run except with an anomalous warming over the TP that mimics the observed temperature anomaly. The numerical results demonstrate that the TP warming induces favorable circulation conditions for the occurrence of this extreme event, which include the deepened lower-level South Asian trough, the enhanced lower-level southwesterly moisture transport in central-southern China, the lower-level cyclonic shear in the southerly flow over southeastern China, and the intensified Middle East jet stream in the middle and upper troposphere. Moreover, the anomalous TP warming results in a remarkable cold anomaly near the surface and a warm anomaly aloft over central China, forming a stable stratified inversion layer that favors the formation of the persistent freezing rain. The possible physical linkages between the TP warming and the relevant resultant circulation anomalies are proposed. The potential reason of the anomalous TP warming during the 2007–08 winter is also discussed.


2021 ◽  
pp. 1-36
Author(s):  
Soo-Hyun Seok ◽  
Kyong-Hwan Seo

AbstractRecent studies have highlighted that a primary mechanism of the East Asian summer monsoon (EASM) is the fluid dynamical response to the Tibetan Plateau (TP), that is, orographically forced Rossby waves. With this mechanism in mind, this study explores how changes in the location of the TP affect the EASM precipitation. Specifically, the TP is moved in the four cardinal directions using idealized general circulation model experiments. The results show that the monsoon aspects are entirely determined by the location of the TP. Interestingly, the strongest EASM precipitation occurs when the TP is situated near its current location, a situation in which downstream southerlies are well developed from the surface to aloft. However, southerlies into the EASM region weaken as the TP moves, which in turn reduces the precipitation. Nevertheless, as long as it moves in the east–west direction, the TP is likely to force the stationary waves that induce precipitation over the mid-latitudes (not necessarily over East Asia). In contrast, moving the TP well north of its original location does not induce strong monsoon flows over the EASM region, resulting in the driest case. Meanwhile, although the southward movement of the TP triggers downstream southerlies to some extent, it does not lead to an increase in the precipitation. Overall, these results show that the location of the TP is crucial in determining the EASM precipitation, and the latter is much more sensitive to the displacement of the TP in the meridional direction than in the zonal direction.


2008 ◽  
Vol 4 (3) ◽  
pp. 153-174 ◽  
Author(s):  
Z. T. Guo ◽  
B. Sun ◽  
Z. S. Zhang ◽  
S. Z. Peng ◽  
G. Q. Xiao ◽  
...  

Abstract. The global climate system experienced a series of drastic changes during the Cenozoic. In Asia, these include the climate transformation from a zonal pattern to a monsoon-dominated pattern, the disappearance of typical subtropical aridity, and the onset of inland deserts. Despite major advances in the last two decades in characterizing and understanding these climate phenomena, disagreements persist relative to the timing, behaviors and underlying causes. This paper addresses these issues mainly based on two lines of evidence. First, we compiled newly collected data from geological indicators of the Cenozoic environment in China as paleoenvironmental maps of ten intervals. In confirming the earlier observation that a zonal climate pattern was transformed into a monsoonal one, the maps within the Miocene indicate that this change was achieved by the early Miocene, roughly consistent with the onset of loess deposition in China. Although a monsoon-like regime would have existed in the Eocene, it was restricted to tropical-subtropical regions. The latitudinal oscillations of the climate zones during the Paleogene are likely attributable to the imbalance in evolution of polar ice-sheets between the two hemispheres. Secondly, we examine the relevant depositional and soil forming processes of the Miocene loess-soil sequences to determine the circulation characteristics with emphasis on the early Miocene. Continuous eolian deposition in the middle reaches of the Yellow River since the early Miocene firmly indicates the formation of inland deserts, which have been constantly maintained during the past 22 Ma. Grain-size gradients between loess sections indicate northerly dust-carrying winds from northern sources, a clear indication of an Asian winter monsoon system. Meanwhile, well-developed Luvisols show evidence that moisture from the oceans reached northern China. This evidence shows the coexistence of two kinds of circulations, one from the ocean carrying moisture and another from the inland deserts transporting dust. The formation of the early Miocene paleosols resulted from interactive soil forming and dust deposition processes in these two seasonally alternating monsoonal circulations. The much stronger development of the early Miocene soils compared to those in the Quaternary loess indicates that summer monsoons were either significantly stronger, more persistent through the year, or both. These lines of evidence indicate a joint change in circulation and inland aridity by the early Miocene and suggest a dynamic linkage of them. Our recent sensitivity tests with a general circulation model, along with relevant geological data, suggest that the onset of these contrasting wet/dry responses, as well as the change from the "planetary" subtropical aridity pattern to the "inland" aridity pattern, resulted from the combined effects of Tibetan uplift and withdrawal of the Paratethys seaway in central Asia, as suggested by earlier experiments. The spreading of South China Sea also helped to enhance the south-north contrast of humidity. The Miocene loess record provides a vital insight that these tectonic factors had evolved by the early Miocene to a threshold sufficient to cause this major climate reorganization in Asia.


2020 ◽  
Vol 33 (18) ◽  
pp. 7945-7965 ◽  
Author(s):  
J. C. H. Chiang ◽  
W. Kong ◽  
C. H. Wu ◽  
D. S. Battisti

AbstractThe East Asian summer monsoon is unique among summer monsoon systems in its complex seasonality, exhibiting distinct intraseasonal stages. Previous studies have alluded to the downstream influence of the westerlies flowing around the Tibetan Plateau as key to its existence. We explore this hypothesis using an atmospheric general circulation model that simulates the intraseasonal stages with fidelity. Without a Tibetan Plateau, East Asia exhibits only one primary convective stage typical of other monsoons. As the plateau is introduced, the distinct rainfall stages—spring, pre-mei-yu, mei-yu, and midsummer—emerge, and rainfall becomes more intense overall. This emergence coincides with a pronounced modulation of the westerlies around the plateau and extratropical northerlies penetrating northeastern China. The northerlies meridionally constrain the moist southerly flow originating from the tropics, leading to a band of lower-tropospheric convergence and humidity front that produces the rainband. The northward migration of the westerlies away from the northern edge of the plateau leads to a weakening of the extratropical northerlies, which, coupled with stronger monsoonal southerlies, leads to the northward migration of the rainband. When the peak westerlies migrate north of the plateau during the midsummer stage, the extratropical northerlies disappear, leaving only the monsoon low-level circulation that penetrates northeastern China; the rainband disappears, leaving isolated convective rainfall over northeastern China. In short, East Asian rainfall seasonality results from the interaction of two seasonally evolving circulations—the monsoonal southerlies that strengthen and extend northward, and the midlatitude northerlies that weaken and eventually disappear—as summer progresses.


2016 ◽  
Author(s):  
S. Botsyun ◽  
P. Sepulchre ◽  
C. Risi ◽  
Y. Donnadieu

Abstract. Paleoelevation reconstructions of mountain belts have become a focus of modern science since surface elevation provides crucial information for understanding both geodynamic mechanisms of Earth’s interior and influence of mountains growth on climate. Stable oxygen isotopes paleoaltimetry is one of the most popular techniques nowadays, and relies on the difference between δ18O of paleo-precipitation reconstructed using the natural archives, and modern measured values for the point of interest. Our goal is to understand where and how complex climatic changes linked with the growth of mountains affect δ18O in precipitation. For this purpose, we develop a theoretical expression for the precipitation composition and we use the isotope-equipped atmospheric general circulation model LMDZ-iso. Experiments with reduced height over the Tibetan Plateau and the Himalayas have been designed. Our results show that the isotopic composition of precipitation is very sensitive to climate changes related with the growth of the Himalayas and Tibetan Plateau, notably changes in relative humidity and precipitation amount. The relative contribution of controlling factors and their magnitude differ depending on the uplift stage and the region considered. Thus future paleoaltimetry studies should take into account constraints on climatic factors to avoid misestimating ancient altitudes.


Sign in / Sign up

Export Citation Format

Share Document