Modeling Water and Heat Balance of the Boreal Landscape—Comparison of Forest and Arable Land in Scandinavia

2004 ◽  
Vol 43 (11) ◽  
pp. 1750-1767 ◽  
Author(s):  
David Gustafsson ◽  
Elisabet Lewan ◽  
Per-Erik Jansson

Abstract The water and heat balances of an arable field and a forest in the boreal zone in Scandinavia were explored using 3 yr of observations and simulations with two different soil–vegetation–atmosphere transfer (SVAT) models over a 30-yr period. Results from a detailed mechanistic model [coupled heat and mass transfer model (COUP)] were compared with those obtained with a large-scale type of SVAT model used in the weather prediction model at the European Centre for Medium-Range Weather Forecasts [ECMWF tiled land surface scheme (TESSEL)]. The COUP model simulations agreed well with the observations from a seasonal perspective. The TESSEL model differed significantly from the measurements when standard operational parameter values were used. The introduction of a seasonal variation in leaf-area index values, tuned canopy resistance for forest, and a reduced roughness length over snow-covered open land reduced the discrepancies. Net radiation was 40% higher in the forest when compared with the arable land, based on 30-yr simulations with both models. Furthermore, the forest was a net source of sensible heat flux, whereas the arable land was a net sink. Because of different treatment of winter interception evaporation, forest latent heat flux based on the COUP model considerably exceeded that from the TESSEL model, and suggested that the total annual evaporation was higher from the forest than from arable land. The representation of interception evaporation in winter, as well as seasonal dynamics in vegetation properties are, thus, of considerable importance for adequate simulation of forest and arable land energy fluxes within the boreal zone.

2006 ◽  
Vol 7 (3) ◽  
pp. 389-403 ◽  
Author(s):  
Giacomo Bertoldi ◽  
Riccardo Rigon ◽  
Thomas M. Over

Abstract The GEOtop model makes it possible to analyze the short- and long-term effects of geomorphic variation on the partitioning of the lateral surface and subsurface water and surface energy fluxes. The topography of the Little Washita basin (Oklahoma) and of the Serraia basin (Trentino, Italy) have been used as base topographies from which virtual topographies with altered slopes and elevations have been created with corresponding modifications of the soil thickness and the extension of the channel network, according to applicable geomorphological theories, in order to quantify the contribution of these topographic features to the spatial and temporal variability of energy and water fluxes. Simulation results show that both a more extended channel network and more accentuated slopes cause an increase in the discharge balanced by a diminution of the evapotranspiration. The diminution of the latent heat flux is balanced by the increase in the sensible heat flux. Net radiation shows a minor sensitivity to topography. Evaporative fraction, on the contrary, is shown to be strongly dependent on geomorphic characteristics. The results confirm the importance of including an adequate treatment of topography in large-scale land surface models.


2021 ◽  
Vol 13 (17) ◽  
pp. 3409
Author(s):  
Suosuo Li ◽  
Yuanpu Liu ◽  
Yongjie Pan ◽  
Zhe Li ◽  
Shihua Lyu

Land-surface characteristics (LSCs) and land-soil moisture conditions can modulate energy partition at the land surface, impact near-surface atmosphere conditions, and further affect land–atmosphere interactions. This study investigates the effect of land-surface-characteristic parameters (LSCPs) including albedo, leaf-area index (LAI), and soil moisture (SM) on hot weather by in East China using the numerical model. Simulations using the Weather Research and Forecasting (WRF) Model were conducted for a hot weather event with a high spatial resolution of 1 km in domain 3 by using ERA-Interim forcing fields on 20 July 2017 until 16:00 UTC on 25 July 2017. The satellite-based albedo and LAI, and assimilation-based soil-moisture data of high temporal–spatial resolution, which are more accurate to match fine weather forecasts and high-resolution simulations, were used to update the default LSCPs. A control simulation with the default LSCPs (WRF_CTL), a main sensitivity simulation with the updated LSCP albedo, LAI and SM (WRF_CHAR), and a series of other sensitivity simulations with one or two updated LSCPs were performed. Results show that WRF_CTL could reproduce the spatial distribution of hot weather, but overestimated air temperature (Ta) and maximal air temperature (Tamax) with a warming bias of 1.05 and 1.32 °C, respectively. However, the WRF_CHAR simulation reduced the warming bias, and improved the simulated Ta and Tamax with reducing relative biases of 33.08% and 29.24%, respectively. Compared to the WRF_CTL, WRF_CHAR presented a negative sensible heat-flux difference, positive latent heat flux, and net radiation difference of the area average. LSCPs modulated the partition of available land-surface energy and then changed the air temperature. On the basis of statistical-correlation analysis, the soil moisture of the top 10 cm is the main factor to improve warming bias on hot weather in East China.


2009 ◽  
Vol 10 (6) ◽  
pp. 1379-1396 ◽  
Author(s):  
Claudio Cassardo ◽  
Seon Ki Park ◽  
Bindu Malla Thakuri ◽  
Daniela Priolo ◽  
Ying Zhang

Abstract In this study, attention has been focused on the climatology of some variables linked to the turbulent exchanges of heat and water vapor in the surface layer during a summer monsoon in Korea. In particular, the turbulent fluxes of sensible and latent heat, the hydrologic budget, and the soil temperatures and moistures have been analyzed. At large scale, because the measurements of those data are not only fragmentary and exiguously available but also infeasible for the execution of climatologic analyses, the outputs of a land surface scheme have been used as surrogate of observations to analyze surface layer processes [this idea is based on the methodology Climatology of Parameters at the Surface (CLIPS)] in the Korean monsoonal climate. Analyses have been made for the summer of 2005. As a land surface scheme, the land surface process model (LSPM) developed at the University of Torino, Italy, has been employed, along with the data collected from 635 Korean meteorological stations. The LSPM predictions showed good agreement with selected observations of soil temperature. Major results show that, during the rainfall season, soil moisture in the first tenths of centimeters frequently exceeds the field capacity, whereas most of the rainfall is “lost” as surface runoff. Evapotranspiration is the dominant component of the energy budget, sometimes even exceeding net radiation, especially during the short periods between the precipitation events; in these periods, daily mean soil temperatures are about 28°C or even more. The Gyeonggi-do region, the metropolitan area surrounding Seoul, shows some particularities when compared with the neighboring regions: solar radiation and precipitations are lower, causing high values of sensible heat flux and soil temperatures, and lower values of latent heat flux and soil moistures.


Author(s):  
Temple R. Lee ◽  
Michael Buban ◽  
Tilden P. Meyers

AbstractMonin-Obukhov Similarity Theory (MOST) has long been used to represent surface-atmosphere exchange in numerical weather prediction (NWP) models. However, recent work has shown that bulk Richardson (Rib) parameterizations, rather than traditional MOST formulations, better represent near-surface wind, temperature, and moisture gradients. So far this work has only been applied to unstable atmospheric regimes. In this study, we extended Rib parameterizations to stable regimes and developed parameterizations for the friction velocity (u*), sensible heat flux (H), and latent heat flux (E) using datasets from the Land-Atmosphere Feedback Experiment (LAFE). We tested our new Rib parameterizations using datasets from the Verification of the Origins of Rotation in Tornadoes Experiment-Southeast (VORTEX-SE) and compared the new Rib parameterizations with traditional MOST parameterizations and MOST parameterizations obtained using the LAFE datasets. We found that fitting coefficients in the MOST parameterizations developed from LAFE datasets differed from the fitting coefficients in classical MOST parameterizations which we attributed to the land surface heterogeneity present in the LAFE domain. Regardless, the new Rib parameterizations performed just as well as and, in some instances better, than the classical MOST parameterizations and the MOST parameterizations developed from the LAFE datasets. The improvement was most evident for H, particularly for H under unstable conditions, which was based on a better 1:1 relationship between the parameterized and observed values. These findings provide motivation to transition away from MOST and to implement bulk Richardson parameterizations into NWP models to represent surface-atmosphere exchange.


2021 ◽  
Vol 22 (10) ◽  
pp. 2547-2564
Author(s):  
Georg Lackner ◽  
Daniel F. Nadeau ◽  
Florent Domine ◽  
Annie-Claude Parent ◽  
Gonzalo Leonardini ◽  
...  

AbstractRising temperatures in the southern Arctic region are leading to shrub expansion and permafrost degradation. The objective of this study is to analyze the surface energy budget (SEB) of a subarctic shrub tundra site that is subject to these changes, on the east coast of Hudson Bay in eastern Canada. We focus on the turbulent heat fluxes, as they have been poorly quantified in this region. This study is based on data collected by a flux tower using the eddy covariance approach and focused on snow-free periods. Furthermore, we compare our results with those from six Fluxnet sites in the Arctic region and analyze the performance of two land surface models, SVS and ISBA, in simulating soil moisture and turbulent heat fluxes. We found that 23% of the net radiation was converted into latent heat flux at our site, 35% was used for sensible heat flux, and about 15% for ground heat flux. These results were surprising considering our site was by far the wettest site among those studied, and most of the net radiation at the other Arctic sites was consumed by the latent heat flux. We attribute this behavior to the high hydraulic conductivity of the soil (littoral and intertidal sediments), typical of what is found in the coastal regions of the eastern Canadian Arctic. Land surface models overestimated the surface water content of those soils but were able to accurately simulate the turbulent heat flux, particularly the sensible heat flux and, to a lesser extent, the latent heat flux.


2017 ◽  
Author(s):  
Gordon B. Bonan ◽  
Edward G. Patton ◽  
Ian N. Harman ◽  
Keith W. Oleson ◽  
John J. Finnigan ◽  
...  

Abstract. Land surface models used in climate models neglect the roughness sublayer and parameterize within-canopy turbulence in an ad hoc manner. We implemented a roughness sublayer turbulence parameterization in a multi-layer canopy model (CLM-ml v0) test if this theory provides a tractable parameterization extending from the ground through the canopy and the roughness sublayer. We compared the canopy model with the Community Land Model (CLM4.5) at 7 forest, 2 grassland, and 3 cropland AmeriFlux sites over a range of canopy height, leaf area index, and climate. The CLM4.5 has pronounced biases during summer months at forest sites in mid-day latent heat flux, sensible heat flux, and gross primary production, nighttime friction velocity, and the radiative temperature diurnal range. The new canopy model reduces these biases by introducing new physics. The signature of the roughness sublayer is most evident in sensible heat flux, friction velocity, and the diurnal cycle of radiative temperature. Within-canopy temperature profiles are markedly different compared with profiles obtained using Monin–Obukhov similarity theory, and the roughness sublayer produces cooler daytime and warmer nighttime temperatures. The herbaceous sites also show model improvements, but the improvements are related less systematically to the roughness sublayer parameterization in these short canopies. The multi-layer canopy with the roughness sublayer turbulence improves simulations compared with the CLM4.5 while also advancing the theoretical basis for surface flux parameterizations.


2019 ◽  
Vol 23 (12) ◽  
pp. 5033-5058
Author(s):  
Guillaume Bigeard ◽  
Benoit Coudert ◽  
Jonas Chirouze ◽  
Salah Er-Raki ◽  
Gilles Boulet ◽  
...  

Abstract. The heterogeneity of Agroecosystems, in terms of hydric conditions, crop types and states, and meteorological forcing, is difficult to characterize precisely at the field scale over an agricultural landscape. This study aims to perform a sensitivity study with respect to the uncertain model inputs of two classical approaches used to map the evapotranspiration of agroecosystems: (1) a surface energy balance (SEB) model, the Two-Source Energy Balance (TSEB) model, forced with thermal infrared (TIR) data as a proxy for the crop hydric conditions, and (2) a soil–vegetation–atmosphere transfer (SVAT) model, the SEtHyS model, where hydric conditions are computed from a soil water budget. To this end, the models' skill was compared using a large and unique in situ database covering different crops and climate conditions, which was acquired over three experimental sites in southern France and Morocco. On average, the models provide 30 min estimations of latent heat flux (LE) with a RMSE of around 55 W m−2 for TSEB and 47 W m−2 for SEtHyS, and estimations of sensible heat flux (H) with a RMSE of around 29 W m−2 for TSEB and 38 W m−2 for SEtHyS. A sensitivity analysis based on realistic errors aimed to estimate the potential decrease in performance induced by the spatialization process. For the SVAT model, the multi-objective calibration iterative procedure (MCIP) is used to determine and test different sets of parameters. TSEB is run with only one set of parameters and provides acceptable performance for all crop stages apart from the early growing season (LAI < 0.2 m2 m−2) and when hydric stress occurs. An in-depth study on the Priestley–Taylor key parameter highlights its marked diurnal cycle and the need to adjust its value to improve flux partitioning between the sensible and latent heat fluxes (1.5 and 1.25 for France and Morocco, respectively). Optimal values of 1.8–2 were highlighted under cloudy conditions, which is of particular interest due to the emergence of low-altitude drone acquisition. Under developed vegetation (LAI > 0.8 m2 m−2) and unstressed conditions, using sets of parameters that only differentiate crop types is a valuable trade-off for SEtHyS. This study provides some scientific elements regarding the joint use of both approaches and TIR imagery, via the development of new data assimilation and calibration strategies.


Author(s):  
Cathy Hohenegger

Even though many features of the vegetation and of the soil moisture distribution over Africa reflect its climatic zones, the land surface has the potential to feed back on the atmosphere and on the climate of Africa. The land surface and the atmosphere communicate via the surface energy budget. A particularly important control of the land surface, besides its control on albedo, is on the partitioning between sensible and latent heat flux. In a soil moisture-limited regime, for instance, an increase in soil moisture leads to an increase in latent heat flux at the expanse of the sensible heat flux. The result is a cooling and a moistening of the planetary boundary layer. On the one hand, this thermodynamically affects the atmosphere by altering the stability and the moisture content of the vertical column. Depending on the initial atmospheric profile, convection may be enhanced or suppressed. On the other hand, a confined perturbation of the surface state also has a dynamical imprint on the atmospheric flow by generating horizontal gradients in temperature and pressure. Such gradients spin up shallow circulations that affect the development of convection. Whereas the importance of such circulations for the triggering of convection over the Sahel region is well accepted and well understood, the effect of such circulations on precipitation amounts as well as on mature convective systems remains unclear. Likewise, the magnitude of the impact of large-scale perturbations of the land surface state on the large-scale circulation of the atmosphere, such as the West African monsoon, has long been debated. One key issue is that such interactions have been mainly investigated in general circulation models where the key involved processes have to rely on uncertain parameterizations, making a definite assessment difficult.


2018 ◽  
Vol 19 (12) ◽  
pp. 1917-1933 ◽  
Author(s):  
Li Fang ◽  
Xiwu Zhan ◽  
Christopher R. Hain ◽  
Jifu Yin ◽  
Jicheng Liu

Abstract Green vegetation fraction (GVF) plays a crucial role in the atmosphere–land water and energy exchanges. It is one of the essential parameters in the Noah land surface model (LSM) that serves as the land component of a number of operational numerical weather prediction models at the National Centers for Environmental Prediction (NCEP) of NOAA. The satellite GVF products used in NCEP models are derived from a simple linear conversion of either the normalized difference vegetation index (NDVI) from the Advanced Very High Resolution Radiometer (AVHRR) currently or the enhanced vegetation index (EVI) from the Visible Infrared Imaging Radiometer Suite (VIIRS) planned for the near future. Since the NDVI or EVI is a simple spectral index of vegetation cover, GVFs derived from them may lack the biophysical meaning required in the Noah LSM. Moreover, the NDVI- or EVI-based GVF data products may be systematically biased over densely vegetated regions resulting from the saturation issue associated with spectral vegetation indices. On the other hand, the GVF is physically related to the leaf area index (LAI), and thus it could be beneficial to derive GVF from LAI data products. In this paper, the EVI-based and the LAI-based GVF derivation methods are mathematically analyzed and are found to be significantly different from each other. Impacts of GVF differences on the Noah LSM simulations and on weather forecasts of the Weather Research and Forecasting (WRF) Model are further assessed. Results indicate that LAI-based GVF outperforms the EVI-based one when used in both the offline Noah LSM and WRF Model.


2010 ◽  
Vol 4 (Special Issue 2) ◽  
pp. S49-S58 ◽  
Author(s):  
J. Brom ◽  
J. Procházka ◽  
A. Rejšková

The dissipation of solar energy and consequently the formation of the hydrological cycle are largely dependent on the structural and optical characteristics of the land surface. In our study, we selected seven units with different types of vegetation in the Mlýnský and Horský catchments (South-Eastern part of the Šumava Mountains, Czech Republic) for the assessment of the differences in their functioning expressed through the surface temperature, humidity, and energy dissipation. For our analyses, we used Landsat 5 TM satellite data from June 25<SUP>th</SUP>, 2008. The results showed that the microclimatic characteristics and energy fluxes varied in different units according to their vegetation characteristics. A cluster analysis of the mean values was used to divide the vegetation units into groups according to their functional characteristics. The mown meadows were characterised by the highest surface temperature and sensible heat flux and the lowest humidity and latent heat flux. On the contrary, the lowest surface temperature and sensible heat flux and the highest humidity and latent heat flux were found in the forest. Our results showed that the climatic and energetic features of the land surface are related to the type of vegetation. We state that the spatial distribution of different vegetation units and the amount of biomass are crucial variables influencing the functioning of the landscape.


Sign in / Sign up

Export Citation Format

Share Document