The Role of Airmass Types and Surface Energy Fluxes in Snow Cover Ablation in the Central Appalachians

2004 ◽  
Vol 43 (12) ◽  
pp. 1887-1899 ◽  
Author(s):  
Daniel J. Leathers ◽  
Daniel Graybeal ◽  
Thomas Mote ◽  
Andrew Grundstein ◽  
David Robinson

Abstract A one-dimensional snowpack model, a unique airmass identification scheme, and surface weather observations are used to investigate large ablation events in the central Appalachian Mountains of North America. Data from cooperative observing stations are used to identify large ablation events within a 1° latitude × 1° longitude grid box that covers the majority of the Lycoming Creek basin in northern Pennsylvania. All 1-day ablation events greater than or equal to 7.6 cm (3 in.) are identified for the period of 1950 through 2001. Seventy-one events are identified, and these days are matched with a daily airmass type derived using the Spatial Synoptic Classification technique. Average meteorological characteristics on ablation days of each airmass type are calculated in an effort to understand the diverse meteorological influences that led to the large ablation events. A one-dimensional mass and energy balance snowpack model (“SNTHERM”) is used to calculate surface/atmosphere energy fluxes responsible for ablation under each airmass type. Results indicate that large ablation events take place under diverse airmass/synoptic conditions in the central Appalachians. Five airmass types account for the 71 large ablation events over the 52-yr period. Forty-three of the events occurred under “moist” airmass types and 28 under “dry” airmass conditions. Large ablation events under dry airmass types are driven primarily by daytime net radiation receipt, especially net solar radiation. These events tend to occur early and late in the snow cover season when solar radiation receipt is highest and are characterized by relatively clear skies, warm daytime temperatures, and low dewpoint temperatures. Moist airmass types are characterized by cloudy, windy conditions with higher dewpoint temperatures and often with liquid precipitation. During these events sensible heat flux is most often the dominant energy flux to the snowpack during ablation episodes. However, in many cases there is also a significant input of energy to the snowpack associated with condensation. Combinations of high sensible and latent heat fluxes often result in extreme ablation episodes, similar to those witnessed in this area in January 1996.


2020 ◽  
Vol 66 (258) ◽  
pp. 543-555 ◽  
Author(s):  
Lindsey Nicholson ◽  
Ivana Stiperski

AbstractWe present the first direct comparison of turbulence conditions measured simultaneously over exposed ice and a 0.08 m thick supraglacial debris cover on Suldenferner, a small glacier in the Italian Alps. Surface roughness, sensible heat fluxes (~20–50 W m−2), latent heat fluxes (~2–10 W m−2), topology and scale of turbulence are similar over both glacier surface types during katabatic and synoptically disturbed conditions. Exceptions are sunny days when buoyant convection becomes significant over debris-covered ice (sensible heat flux ~ −100 W m−2; latent heat flux ~ −30 W m−2) and prevailing katabatic conditions are rapidly broken down even over this thin debris cover. The similarity in turbulent properties implies that both surface types can be treated the same in terms of boundary layer similarity theory. The differences in turbulence between the two surface types on this glacier are dominated by the radiative and thermal contrasts, thus during sunny days debris cover alters both the local surface turbulent energy fluxes and the glacier component of valley circulation. These variations under different flow conditions should be accounted for when distributing temperature fields for modeling applications over partially debris-covered glaciers.



2014 ◽  
Vol 15 (1) ◽  
pp. 143-158 ◽  
Author(s):  
Cezar Kongoli ◽  
William P. Kustas ◽  
Martha C. Anderson ◽  
John M. Norman ◽  
Joseph G. Alfieri ◽  
...  

Abstract The utility of a snow–vegetation energy balance model for estimating surface energy fluxes is evaluated with field measurements at two sites in a rangeland ecosystem in southwestern Idaho during the winter of 2007: one site dominated by aspen vegetation and the other by sagebrush. Model parameterizations are adopted from the two-source energy balance (TSEB) modeling scheme, which estimates fluxes from the vegetation and surface substrate separately using remotely sensed measurements of land surface temperature. Modifications include development of routines to account for surface snowmelt energy flux and snow masking of vegetation. Comparisons between modeled and measured surface energy fluxes of net radiation and turbulent heat showed reasonable agreement when considering measurement uncertainties in snow environments and the simplified algorithm used for the snow surface heat flux, particularly on a daily basis. There was generally better performance over the aspen field site, likely due to more reliable input data of snow depth/snow cover. The model was robust in capturing the evolution of surface energy fluxes during melt periods. The model behavior was also consistent with previous studies that indicate the occurrence of upward sensible heat fluxes during daytime owing to solar heating of vegetation limbs and branches, which often exceeds the downward sensible heat flux driving the snowmelt. However, model simulations over aspen trees showed that the upward sensible heat flux could be reversed for a lower canopy fraction owing to the dominance of downward sensible heat flux over snow. This indicates that reliable vegetation or snow cover fraction inputs to the model are needed for estimating fluxes over snow-covered landscapes.



2020 ◽  
Vol 42 ◽  
pp. e39
Author(s):  
Rubmara Ketzer Oliveira ◽  
Luciano Sobral Fraga Junior ◽  
Larissa Brêtas Moura ◽  
Debora Regina Roberti ◽  
Felipe Gustavo Pilau

Brazil is the main sugarcane producer in the world, which is intended for various purposes, from food to power generation. Soybean cultivation in areas of sugarcane under renewal has been growing progressively in Brazil. Quantifying energy fluxes at different stages of this process is essential for better management. The work was carried out in Piracicaba city, with the objective of analyzing the behavior of energy fluxes and the closing of the energy balance in a sugarcane renewal area with a fallow period followed by soybean cultivation. The latent and sensitive heat fluxes were obtained with the “Eddy covariance” method. The closing of the energy balance in the fallow period with straw-covered uncovered and soybean-cultivated soil presented a correlation coefficient of 0.88, 0.78 and 0.71, respectively. In the period without cultivation, the sensible heat flux was predominant in relation to the latent heat flux, varying according to the rainfall regime. The presence of straw under the soil in the fallow period affected the latent heat flux. With soybean cultivation, the latent heat flux surpassed the sensible heat flux.



2011 ◽  
Vol 50 (6) ◽  
pp. 1341-1353 ◽  
Author(s):  
Steven Hanna ◽  
Edson Marciotto ◽  
Rex Britter

AbstractSurface energy fluxes, at averaging times from 10 min to 1 h, are needed as inputs to most state-of-the-art dispersion models. The sensible heat flux is a major priority, because it is combined with the momentum flux to estimate the stability, the wind profile, and the turbulence intensities. Because of recent concerns about dispersion in built-up downtown areas of large cities, there is a need to estimate sensible heat flux in the midst of tall buildings. In this paper, the authors work with some high-quality and relevant but arguably underutilized data. The results of analysis of urban heat flux components from 10 locations in suburban and built-up downtown areas in Oklahoma City, Oklahoma, during the Joint Urban 2003 (JU2003) field experiment are presented here. At street level in the downtown area, in the midst of tall skyscrapers, the ground heat flux and the sensible heat flux are relatively large and the latent heat flux is relatively small when compared with concurrent fluxes observed in the upwind suburban areas. In confirmation of measurements in other cities, the sensible heat flux in the downtown area is observed to be slightly positive (10–20 W m−2) at night, indicating nearly neutral or slightly unstable conditions. Also in agreement with observations in other cities is that the ground heat flux in the downtown area has a magnitude that is 3 or 4 times that in suburban or rural areas. These results should permit improved parameterizations of sensible heat fluxes in the urban downtown area with tall buildings.



2022 ◽  
Vol 16 (1) ◽  
pp. 127-142
Author(s):  
Georg Lackner ◽  
Florent Domine ◽  
Daniel F. Nadeau ◽  
Annie-Claude Parent ◽  
François Anctil ◽  
...  

Abstract. Arctic landscapes are covered in snow for at least 6 months of the year. The energy balance of the snow cover plays a key role in these environments, influencing the surface albedo, the thermal regime of the permafrost, and other factors. Our goal is to quantify all major heat fluxes above, within, and below a low-Arctic snowpack at a shrub tundra site on the east coast of Hudson Bay in eastern Canada. The study is based on observations from a flux tower that uses the eddy covariance approach and from profiles of temperature and thermal conductivity in the snow and soil. Additionally, we compared the observations with simulations produced using the Crocus snow model. We found that radiative losses due to negative longwave radiation are mostly counterbalanced by the sensible heat flux, whereas the latent heat flux is minimal. At the snow surface, the heat flux into the snow is similar in magnitude to the sensible heat flux. Because the snow cover stores very little heat, the majority of the upward heat flux in the snow is used to cool the soil. Overall, the model was able to reproduce the observed energy balance, but due to the effects of atmospheric stratification, it showed some deficiencies when simulating turbulent heat fluxes at an hourly timescale.



Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 278 ◽  
Author(s):  
Gonzalo Leonardini ◽  
François Anctil ◽  
Maria Abrahamowicz ◽  
Étienne Gaborit ◽  
Vincent Vionnet ◽  
...  

The recently developed Soil, Vegetation, and Snow (SVS) land surface model is being progressively implemented at Environment and Climate Change Canada (ECCC) for operational numerical weather and hydrological predictions. The objective of this study is to evaluate the ability of SVS, in offline point-scale mode and under snow-free conditions, to simulate the surface heat fluxes and soil moisture when compared to flux tower observations and simulations from the Canadian Land Surface Scheme (CLASS), used here as a benchmark model. To do this, we performed point-scale simulations of between 4 and 12 years of data records at six selected sites of the FLUXNET network under arid, Mediterranean and tropical climates. At all sites, SVS shows realistic simulations of latent heat flux, sensible heat flux and net radiation. Soil heat flux is reasonably well simulated for the arid sites and one Mediterranean site and poorly simulated for the tropical sites. On the other hand, surface soil moisture was reasonably well simulated at the arid and Mediterranean sites and poorly simulated at the tropical sites. SVS performance was comparable to CLASS not only for energy fluxes and soil moisture, but also for more specific processes such as evapotranspiration and water balance.



2021 ◽  
Author(s):  
Georg Lackner ◽  
Florent Dominé ◽  
Daniel F. Nadeau ◽  
Annie-Claude Parent ◽  
François Anctil ◽  
...  

Abstract. Arctic landscapes are covered in snow for at least six months of the year. The energy balance of the snow cover plays a key role in these environments, influencing the surface albedo, the thermal regime of the permafrost, and other factors. Our goal is to quantify all major heat fluxes above, within, and below a low Arctic snowpack at a shrub tundra site on the east coast of Hudson Bay in eastern Canada. The study is based on observations from a flux tower that uses the eddy covariance approach and from profiles of temperature and thermal conductivity in the snow and soil. Additionally, we compared the observations with simulations produced using the Crocus snow model. We found that radiative losses due to negative longwave radiation are mostly counterbalanced by the sensible heat flux, whereas the latent heat flux is minimal. At the snow surface, the heat flux into the snow is similar in magnitude to the sensible heat flux. Because the snow cover stores very little heat, the majority of the heat flux into the snow is used to cool the soil. Overall, the model was able to reproduce the observed energy balance, but due to the effects of atmospheric stratification, showed some deficiencies when simulating turbulent heat fluxes at an hourly time scale.



2008 ◽  
Vol 136 (10) ◽  
pp. 3863-3872 ◽  
Author(s):  
Kerry Emanuel ◽  
Jeff Callaghan ◽  
Peter Otto

Tropical cyclones moving inland over northern Australia are occasionally observed to reintensify, even in the absence of well-defined extratropical systems. Unlike cases of classical extratropical rejuvenation, such reintensifying storms retain their warm-core structure, often redeveloping such features as eyes. It is here hypothesized that the intensification or reintensification of these systems, christened agukabams, is made possible by large vertical heat fluxes from a deep layer of very hot, sandy soil that has been wetted by the first rains of the approaching systems, significantly increasing its thermal diffusivity. To test this hypothesis, simulations are performed with a simple tropical cyclone model coupled to a one-dimensional soil model. These simulations suggest that warm-core cyclones can indeed intensify when the underlying soil is sufficiently warm and wet and are maintained by heat transfer from the soil. The simulations also suggest that when the storms are sufficiently isolated from their oceanic source of moisture, the rainfall they produce is insufficient to keep the soil wet enough to transfer significant quantities of heat, and the storms then decay rapidly.



2014 ◽  
Vol 53 (2) ◽  
pp. 323-332 ◽  
Author(s):  
Nikki Vercauteren ◽  
Steve W. Lyon ◽  
Georgia Destouni

AbstractThis study uses GIS-based modeling of incoming solar radiation to quantify fine-resolved spatiotemporal responses of year-round monthly average temperature within a field study area located on the eastern coast of Sweden. A network of temperature sensors measures surface and near-surface air temperatures during a year from June 2011 to June 2012. Strong relationships between solar radiation and temperature exhibited during the growing season (supporting previous work) break down in snow cover and snowmelt periods. Surface temperature measurements are here used to estimate snow cover duration, relating the timing of snowmelt to low performance of an existing linear model developed for the investigated site. This study demonstrates that linearity between insolation and temperature 1) may only be valid for solar radiation levels above a certain threshold and 2) is affected by the consumption of incoming radiation during snowmelt.



2008 ◽  
Vol 9 (6) ◽  
pp. 1443-1463 ◽  
Author(s):  
Susan Frankenstein ◽  
Anne Sawyer ◽  
Julie Koeberle

Abstract Numerical experiments of snow accumulation and depletion were carried out as well as surface energy fluxes over four Cold Land Processes Experiment (CLPX) sites in Colorado using the Snow Thermal model (SNTHERM) and the Fast All-Season Soil Strength model (FASST). SNTHERM is a multilayer snow model developed to describe changes in snow properties as a function of depth and time, using a one-dimensional mass and energy balance. The model is intended for seasonal snow covers and addresses conditions found throughout the winter, from initial ground freezing in the fall to snow ablation in the spring. It has been used by many researchers over a variety of terrains. FASST is a newly developed one-dimensional dynamic state-of-the-ground model. It calculates the ground’s moisture content, ice content, temperature, and freeze–thaw profiles as well as soil strength and surface ice and snow accumulation/depletion. Because FASST is newer and not as well known, the authors wanted to determine its use as a snow model by comparing it with SNTHERM, one of the most established snow models available. It is demonstrated that even though FASST is only a single-layer snow model, the RMSE snow depth compared very favorably against SNTHERM, often performing better during the accumulation phase. The surface energy fluxes calculated by the two models were also compared and were found to be similar.



Sign in / Sign up

Export Citation Format

Share Document