scholarly journals A Surface Wind Extremes (“Wind Lulls” and “Wind Blows”) Climatology for Central North America and Adjoining Oceans (1979–2012)

2015 ◽  
Vol 54 (3) ◽  
pp. 643-657 ◽  
Author(s):  
Jonny W. Malloy ◽  
Daniel S. Krahenbuhl ◽  
Chad E. Bush ◽  
Robert C. Balling ◽  
Michael M. Santoro ◽  
...  

AbstractThis study explores long-term deviations from wind averages, specifically near the surface across central North America and adjoining oceans (25°–50°N, 60°–130°W) for 1979–2012 (408 months) by utilizing the North American Regional Reanalysis 10-m wind climate datasets. Regions where periods of anomalous wind speeds were observed (i.e., 1 standard deviation below/above both the long-term mean annual and mean monthly wind speeds at each grid point) were identified. These two climatic extremes were classified as wind lulls (WLs; below) or wind blows (WBs; above). Major findings for the North American study domain indicate that 1) mean annual wind speeds range from 1–3 m s−1 (Intermountain West) to over 7 m s−1 (offshore the East and West Coasts), 2) mean durations for WLs and WBs are high for much of the southeastern United States and for the open waters of the North Atlantic Ocean, respectively, 3) the longest WL/WB episodes for the majority of locations have historically not exceeded 5 months, 4) WLs and WBs are most common during June and October, respectively, for the upper Midwest, 5) WLs are least frequent over the southwestern United States during the North American monsoon, and 6) no significant anomalous wind trends exist over land or sea.

2021 ◽  
Author(s):  
Terhi K. Laurila ◽  
Victoria A. Sinclair ◽  
Hilppa Gregow

<p>The knowledge of long-term climate and variability of near-surface wind speeds is essential and widely used among meteorologists, climate scientists and in industries such as wind energy and forestry. The new high-resolution ERA5 reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) will likely be used as a reference in future climate projections and in many wind-related applications. Hence, it is important to know what is the mean climate and variability of wind speeds in ERA5.</p><p>We present the monthly 10-m wind speed climate and decadal variability in the North Atlantic and Europe during the 40-year period (1979-2018) based on ERA5. In addition, we examine temporal time series and possible trends in three locations: the central North Atlantic, Finland and Iberian Peninsula. Moreover, we investigate what are the physical reasons for the decadal changes in 10-m wind speeds.</p><p>The 40-year mean and the 98th percentile wind speeds show a distinct contrast between land and sea with the strongest winds over the ocean and a seasonal variation with the strongest winds during winter time. The winds have the highest values and variabilities associated with storm tracks and local wind phenomena such as the mistral. To investigate the extremeness of the winds, we defined an extreme find factor (EWF) which is the ratio between the 98th percentile and mean wind speeds. The EWF is higher in southern Europe than in northern Europe during all months. Mostly no statistically significant linear trends of 10-m wind speeds were found in the 40-year period in the three locations and the annual and decadal variability was large.</p><p>The windiest decade in northern Europe was the 1990s and in southern Europe the 1980s and 2010s. The decadal changes in 10-m wind speeds were largely explained by the position of the jet stream and storm tracks and the strength of the north-south pressure gradient over the North Atlantic. In addition, we investigated the correlation between the North Atlantic Oscillation (NAO) and the Atlantic Multi-decadal Oscillation (AMO) in the three locations. The NAO has a positive correlation in the central North Atlantic and Finland and a negative correlation in Iberian Peninsula. The AMO correlates moderately with the winds in the central North Atlantic but no correlation was found in Finland or the Iberian Peninsula. Overall, our study highlights that rather than just using long-term linear trends in wind speeds it is more informative to consider inter-annual or decadal variability.</p>


2009 ◽  
Vol 24 (5) ◽  
pp. 1173-1190 ◽  
Author(s):  
Michael E. Charles ◽  
Brian A. Colle

Abstract This paper verifies extratropical cyclones around North America and the adjacent oceans within the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) and North American Mesoscale (NAM) models during the 2002–07 cool seasons (October–March). The analyzed cyclones in the Global Forecast System (GFS) model, North American Mesoscale (NAM) model, and the North American Regional Reanalysis (NARR) were also compared against sea level pressure (SLP) observations around extratropical cyclones. The GFS analysis of SLP was clearly superior to the NAM and NARR analyses. The analyzed cyclone pressures in the NAM improved in 2006–07 when its data assimilation was switched to the Gridpoint Statistical Interpolation (GSI). The NCEP GFS has more skillful cyclone intensity and position forecasts than the NAM over the continental United States and adjacent oceans, especially over the eastern Pacific, where the NAM has a large positive (underdeepening) bias in cyclone central pressure. For the short-term (0–60 h) forecasts, the GFS and NAM cyclone errors over the eastern Pacific are larger than the other regions to the east. There are relatively large biases in cyclone position for both models, which vary spatially around North America. The eastern Pacific has four to eight cyclone events per year on average, with errors >10 mb at hour 48 in the GFS; this number has not decreased in recent years. There has been little improvement in the 0–2-day cyclone forecasts during the past 5 yr over the eastern United States, while there has been a relatively large improvement in the cyclone pressure predictions over the eastern Pacific in the NAM.


2011 ◽  
Vol 139 (5) ◽  
pp. 1305-1322 ◽  
Author(s):  
Richard E. Orville ◽  
Gary R. Huffines ◽  
William R. Burrows ◽  
Kenneth L. Cummins

Cloud-to-ground (CG) lightning data have been analyzed for the years 2001–09 for North America, which includes Alaska, Canada, and the lower 48 U.S. states. Flashes recorded within the North American Lightning Detection Network (NALDN) are examined. No corrections for detection efficiency variability are made over the 9 yr of the dataset or over the large geographical area comprising North America. There were network changes in the NALDN during the 9 yr, but these changes have not been corrected for nor have the recorded data been altered in any way with the exception that all positive lightning reports with peak currents less than 15 kA have been deleted. Thus, the reader should be aware that secular changes are not just climatological in nature. All data were analyzed with a spatial resolution of 20 km. The analyses presented in this work provide a synoptic view of the interannual variability of lightning observations in North America, including the impacts of physical changes in the network during the 9 yr of study. These data complement and extend previous analyses that evaluate the U.S. NLDN during periods of upgrade. The total (negative and positive) flashes for ground flash density, the percentage of positive lightning, and the positive flash density have been analyzed. Furthermore, the negative and positive first stroke peak currents and the flash multiplicity have been examined. The highest flash densities in Canada are along the U.S.–Canadian border (1–2 flashes per square kilometer) and in the United States along the Gulf of Mexico coast from Texas through Florida (exceeding 14 flashes per square kilometer in Florida). The Gulf Stream is “outlined” by higher flash densities off the east coast of the United States. Maximum annual positive flash densities in Canada range primarily from 0.01 to 0.3 flashes per square kilometer, and in the United States to over 0.5 flashes per square kilometer in the Midwest and in the states of Louisiana and Mississippi. The annual percentage of positive lightning to ground varies from less than 2% over Florida to values exceeding 25% off the West Coast, Alaska, and the Yukon. A localized maximum in the percentage of positive lightning in the NALDN occurs in Manitoba and western Ontario, just north of North Dakota and Minnesota. When averaged over North America, first stroke negative median peak currents range from 19.8 kA in 2001 to 16.0 kA in 2009 and for all years, average 16.1 kA. First stroke positive median peak currents range from a high of 29.0 kA in 2008 and 2009 to a low of 23.3 kA in 2003 with a median of 25.7 kA for all years. There is a relatively sharp transition from low to high median negative peak currents along the Gulf and Atlantic coasts of the United States. No sharp transitions are observed for the median positive peak currents. Relatively lower positive peak currents occur throughout the southeastern United States. The highest values of mean negative multiplicity exceed 3.0 strokes per flash in the NALDN with some variation over the 9 yr. Lower values of mean negative multiplicity occur in the western United States. Positive flash mean multiplicity is slightly higher than 1.1, with the highest values of 1.7 observed in the southwestern states. As has been noted in prior research, CG lightning has significant variations from storm to storm as well as between geographical regions and/or seasons and, consequently, a single distribution for any lightning parameter, such as multiplicity or peak current, may not be sufficient to represent or describe the parameter.


2016 ◽  
Vol 29 (2) ◽  
pp. 659-671 ◽  
Author(s):  
Qi Hu ◽  
Michael C. Veres

Abstract This is the second part of a two-part paper that addresses deterministic roles of the sea surface temperature (SST) anomalies associated with the Atlantic multidecadal oscillation (AMO) in variations of atmospheric circulation and precipitation in the Northern Hemisphere, using a sequence of idealized model runs at the spring equinox conditions. This part focuses on the effect of the SST anomalies on North American precipitation. Major results show that, in the model setting closest to the real-world situation, a warm SST anomaly in the North Atlantic Ocean causes suppressed precipitation in central, western, and northern North America but more precipitation in the southeast. A nearly reversed pattern of precipitation anomalies develops in response to the cold SST anomaly. Further examinations of these solutions reveal that the response to the cold SST anomaly is less stable than that to the warm SST anomaly. The former is “dynamically charged” in the sense that positive eddy kinetic energy (EKE) exists over the continent. The lack of precipitation in its southeast is because of an insufficient moisture supply. In addition, the results show that the EKE of the short- (2–6 day) and medium-range (7–10 day) weather-producing processes in North America have nearly opposite signs in response to the same cold SST anomaly. These competing effects of eddies in the dynamically charged environment (elevated sensitivity to moisture) complicate the circulation and precipitation responses to the cold SST anomaly in the North Atlantic and may explain why the model results show more varying precipitation anomalies (also confirmed by statistical test results) during the cold than the warm SST anomaly, as also shown in simulations with more realistic models. Results of this study indicate a need to include the AMO in the right context with other forcings in an effort to improve understanding of interannual-to-multidecadal variations in warm season precipitation in North America.


2007 ◽  
Vol 85 (3) ◽  
pp. 342-346 ◽  
Author(s):  
J. Kout ◽  
J. Vlasák

The polypore Trametes gibbosa (Pers.) Fries, common in Europe and Asia, is reported from eastern North America for the first time. Single basidiospore cultures from Pennsylvania, United States, and Quebec, Canada, were paired with each other and with cultures from the Czech Republic. The North American intercollection crosses were 60% compatible and 100% compatible with the Czech cultures. All the crosses among the Czech cultures were 100% compatible. The recent introduction of T. gibbosa to North America is suggested as a possible explanation for the limited number of mating-type alleles and subsequent incompatibility among the North American cultures.


2005 ◽  
Vol 5 (4) ◽  
pp. 6127-6184 ◽  
Author(s):  
G. Guerova ◽  
I. Bey ◽  
J.-L. Attié ◽  
R. V. Martin

Abstract. This paper reports on Long Range Transport (LRT) of ozone and related species over the North Atlantic ocean and its impact on Europe. Measurements of NO2 and O3 columns from the GOME and MOPITT satellite instruments are first used in conjunction with the GEOS-CHEM global model of transport and tropospheric chemistry to identify the major events of LRT that reach Europe over the course of the summer 2000. Model simulations are then used to examine surface O3 observations at a European mountain site and O3 vertical profiles over several European cities to quantify the impact of the LRT events on the European ozone distributions. Over the course of summer 2000, we identified nine major episodes of pollution transport between North America and Europe, which are in majority associated with WCB/post-frontal outflow (7 events) and zonal transport (2 events). We find that on average three episodes occur per month with the strongest ones being in June. The number and frequency of LRT events that reach Europe after leaving North America is strongly driven by the position and strength of the Azores anticyclone. After leaving North America, the plumes can either i) travel in the North American cyclones, mostly in the Warm Conveyor Belt (WCB), tracking poleward and thus reach Europe at high latitudes; ii) be transported zonally between 40° and 55° N directly to Europe; iii) be incorporated into the Azores anticyclone and reach Europe at mid-latitudes. Based on model sensitivity simulation it can be concluded that on average the North American sources of ozone contribute between 2–8 ppb in PBL and 10–13 ppb in FT. During particular episodes the North American sources resulted in O3 enhancement up to 25–28 ppb in the layer between 800–600 hPa and 10–12 ppb in PBL. For some episodes a substantial North American contribution (30% or higher) does not translate into a well marked enhancement of the total O3.


1937 ◽  
Vol 69 (10) ◽  
pp. 218-219
Author(s):  
A. Glenn Richards

The following notes are written to place on record certain authentic records of tropical species taken in the southern United States. Most of these species are not at present recorded in the North American lists. Unless otherwise stated all specimens are in the author's collection.


1875 ◽  
Vol 7 (9) ◽  
pp. 164-167
Author(s):  
Aug. R. Grote

From the condition of an hypothesis the glacial epoch has been elevated into that of a theory by the explanations it has afforded to a certain class of geological phenomena. The present paper endeavors to show that certain zoological facts are consistent with the presence, during past times, of a vast progressive field of ice, which, in its movement from north to south, gradually extended over large portions of the North American continent. These facts, in the present instance, are furnished by a study of our Lepidoptera, or certain kinds of butterflies and moths now inhabiting the United States and adjacent territories.


2014 ◽  
Vol 27 (1) ◽  
pp. 362-382 ◽  
Author(s):  
Fuyao Wang ◽  
Michael Notaro ◽  
Zhengyu Liu ◽  
Guangshan Chen

Abstract The observed local and nonlocal influences of vegetation on the atmosphere across North America are quantified after first removing the oceanic impact. The interaction between vegetation and the atmosphere is dominated by forcing from the atmosphere, making it difficult to extract the forcing from vegetation. Furthermore, the atmosphere is not only influenced by vegetation but also the oceans, so in order to extract the vegetation impact, the oceanic forcing must first be excluded. This study identified significant vegetation impact in two climatically and ecologically unique regions: the North American monsoon region (NAMR) and the North American boreal forest (NABF). A multivariate statistical method, a generalized equilibrium feedback assessment, is applied to extract vegetation influence on the atmosphere. The statistical method is validated using a dynamical experiment for the NAMR in a fully coupled climate model, the Community Climate System Model, version 3.5 (CCSM3.5). The observed influence of NAMR vegetation on the atmosphere peaks in June–August and is primarily attributed to both roughness and hydrological feedbacks. Elevated vegetation amount increases evapotranspiration and surface roughness, which leads to a local decline in sea level pressure and generates an atmospheric teleconnection response. This atmospheric response leads to moister and cooler (drier and warmer) conditions over the western and central United States (Gulf states). The observed influence of the NABF on the atmosphere peaks in March–May, related to a thermal feedback. Enhanced vegetation greenness increases the air temperature locally. The atmosphere tends to form a positive Pacific–North American (PNA)-like pattern, and this anomalous atmospheric circulation and associated moisture advection lead to moister (drier) conditions in the western (eastern) United States.


Sign in / Sign up

Export Citation Format

Share Document