Observed Local and Remote Influences of Vegetation on the Atmosphere across North America Using a Model-Validated Statistical Technique That First Excludes Oceanic Forcings*

2014 ◽  
Vol 27 (1) ◽  
pp. 362-382 ◽  
Author(s):  
Fuyao Wang ◽  
Michael Notaro ◽  
Zhengyu Liu ◽  
Guangshan Chen

Abstract The observed local and nonlocal influences of vegetation on the atmosphere across North America are quantified after first removing the oceanic impact. The interaction between vegetation and the atmosphere is dominated by forcing from the atmosphere, making it difficult to extract the forcing from vegetation. Furthermore, the atmosphere is not only influenced by vegetation but also the oceans, so in order to extract the vegetation impact, the oceanic forcing must first be excluded. This study identified significant vegetation impact in two climatically and ecologically unique regions: the North American monsoon region (NAMR) and the North American boreal forest (NABF). A multivariate statistical method, a generalized equilibrium feedback assessment, is applied to extract vegetation influence on the atmosphere. The statistical method is validated using a dynamical experiment for the NAMR in a fully coupled climate model, the Community Climate System Model, version 3.5 (CCSM3.5). The observed influence of NAMR vegetation on the atmosphere peaks in June–August and is primarily attributed to both roughness and hydrological feedbacks. Elevated vegetation amount increases evapotranspiration and surface roughness, which leads to a local decline in sea level pressure and generates an atmospheric teleconnection response. This atmospheric response leads to moister and cooler (drier and warmer) conditions over the western and central United States (Gulf states). The observed influence of the NABF on the atmosphere peaks in March–May, related to a thermal feedback. Enhanced vegetation greenness increases the air temperature locally. The atmosphere tends to form a positive Pacific–North American (PNA)-like pattern, and this anomalous atmospheric circulation and associated moisture advection lead to moister (drier) conditions in the western (eastern) United States.

2009 ◽  
Vol 24 (5) ◽  
pp. 1173-1190 ◽  
Author(s):  
Michael E. Charles ◽  
Brian A. Colle

Abstract This paper verifies extratropical cyclones around North America and the adjacent oceans within the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) and North American Mesoscale (NAM) models during the 2002–07 cool seasons (October–March). The analyzed cyclones in the Global Forecast System (GFS) model, North American Mesoscale (NAM) model, and the North American Regional Reanalysis (NARR) were also compared against sea level pressure (SLP) observations around extratropical cyclones. The GFS analysis of SLP was clearly superior to the NAM and NARR analyses. The analyzed cyclone pressures in the NAM improved in 2006–07 when its data assimilation was switched to the Gridpoint Statistical Interpolation (GSI). The NCEP GFS has more skillful cyclone intensity and position forecasts than the NAM over the continental United States and adjacent oceans, especially over the eastern Pacific, where the NAM has a large positive (underdeepening) bias in cyclone central pressure. For the short-term (0–60 h) forecasts, the GFS and NAM cyclone errors over the eastern Pacific are larger than the other regions to the east. There are relatively large biases in cyclone position for both models, which vary spatially around North America. The eastern Pacific has four to eight cyclone events per year on average, with errors >10 mb at hour 48 in the GFS; this number has not decreased in recent years. There has been little improvement in the 0–2-day cyclone forecasts during the past 5 yr over the eastern United States, while there has been a relatively large improvement in the cyclone pressure predictions over the eastern Pacific in the NAM.


2020 ◽  
Vol 33 (6) ◽  
pp. 2427-2447 ◽  
Author(s):  
Nathaniel C. Johnson ◽  
Lakshmi Krishnamurthy ◽  
Andrew T. Wittenberg ◽  
Baoqiang Xiang ◽  
Gabriel A. Vecchi ◽  
...  

AbstractPositive precipitation biases over western North America have remained a pervasive problem in the current generation of coupled global climate models. These biases are substantially reduced, however, in a version of the Geophysical Fluid Dynamics Laboratory Forecast-Oriented Low Ocean Resolution (FLOR) coupled climate model with systematic sea surface temperature (SST) biases artificially corrected through flux adjustment. This study examines how the SST biases in the Atlantic and Pacific Oceans contribute to the North American precipitation biases. Experiments with the FLOR model in which SST biases are removed in the Atlantic and Pacific are carried out to determine the contribution of SST errors in each basin to precipitation statistics over North America. Tropical and North Pacific SST biases have a strong impact on northern North American precipitation, while tropical Atlantic SST biases have a dominant impact on precipitation biases in southern North America, including the western United States. Most notably, negative SST biases in the tropical Atlantic in boreal winter induce an anomalously strong Aleutian low and a southward bias in the North Pacific storm track. In boreal summer, the negative SST biases induce a strengthened North Atlantic subtropical high and Great Plains low-level jet. Each of these impacts contributes to positive annual mean precipitation biases over western North America. Both North Pacific and North Atlantic SST biases induce SST biases in remote basins through dynamical pathways, so a complete attribution of the effects of SST biases on precipitation must account for both the local and remote impacts.


1984 ◽  
Vol 116 (4) ◽  
pp. 487-527 ◽  
Author(s):  
J. M. Campbell

AbstractThe North American species of the genera Arpedium Erichson, and Eucnecosum Reitter are revised. Five species are recognized, the holarctic species E. brachypterum (Gravenhorst), E. tenue (LeConte) and E. brunnescens (J. Sahlberg), the transcontinental boreal species A. cribratum Fauvel and the eastern United States species A. schwarzi Fauvel.Lectotypes are designated for E. brachypterum, A. cribratum, A. angulare Fauvel (= A. cribratum), and A. schwarzi. The following new synonymy is established, Arpedium norvegicum var. sallasi Munster and Eucnecosum meybohmi Lohse (= E. tenue) and Arpedium angulare Fauvel and A. columbiense Hatch (= A. cribratum). All genera and species are described and illustrated with scanning electron photomicrographs and line drawings, four maps showing the North American distribution of each species are provided, and keys are presented to aid in the identification of all the species as well as the European species Arpedium quadrum (Gravenhorst). All available records and biological data for the species are summarized.The use of the generic name Eucnecosum Reitter is discussed and the transfer of brachypterum, tenue, and brunnescens from Arpedium to this genus by Lohse is confirmed.


1961 ◽  
Vol 93 (7) ◽  
pp. 501-502 ◽  
Author(s):  
R. J. Finnegan

There are five known North American species in the genus Hylobius; H. pales (Hbst.), H. congener Dalla Torre, H. pinicola (Couper), H. radicis Buch., and H. warreni Wood. In recent years four of these species have increased considerably in economic importance in central and eastern Canada and the eastern United States; H. pales and H. radicis attacking pines and H. pinicola and H. warreni attacking spruces and pines. H. congener occurs only in small numbers and little is known about its ecology. It is important, therefore, to be able to separate these species readily in the field.


2011 ◽  
Vol 139 (5) ◽  
pp. 1305-1322 ◽  
Author(s):  
Richard E. Orville ◽  
Gary R. Huffines ◽  
William R. Burrows ◽  
Kenneth L. Cummins

Cloud-to-ground (CG) lightning data have been analyzed for the years 2001–09 for North America, which includes Alaska, Canada, and the lower 48 U.S. states. Flashes recorded within the North American Lightning Detection Network (NALDN) are examined. No corrections for detection efficiency variability are made over the 9 yr of the dataset or over the large geographical area comprising North America. There were network changes in the NALDN during the 9 yr, but these changes have not been corrected for nor have the recorded data been altered in any way with the exception that all positive lightning reports with peak currents less than 15 kA have been deleted. Thus, the reader should be aware that secular changes are not just climatological in nature. All data were analyzed with a spatial resolution of 20 km. The analyses presented in this work provide a synoptic view of the interannual variability of lightning observations in North America, including the impacts of physical changes in the network during the 9 yr of study. These data complement and extend previous analyses that evaluate the U.S. NLDN during periods of upgrade. The total (negative and positive) flashes for ground flash density, the percentage of positive lightning, and the positive flash density have been analyzed. Furthermore, the negative and positive first stroke peak currents and the flash multiplicity have been examined. The highest flash densities in Canada are along the U.S.–Canadian border (1–2 flashes per square kilometer) and in the United States along the Gulf of Mexico coast from Texas through Florida (exceeding 14 flashes per square kilometer in Florida). The Gulf Stream is “outlined” by higher flash densities off the east coast of the United States. Maximum annual positive flash densities in Canada range primarily from 0.01 to 0.3 flashes per square kilometer, and in the United States to over 0.5 flashes per square kilometer in the Midwest and in the states of Louisiana and Mississippi. The annual percentage of positive lightning to ground varies from less than 2% over Florida to values exceeding 25% off the West Coast, Alaska, and the Yukon. A localized maximum in the percentage of positive lightning in the NALDN occurs in Manitoba and western Ontario, just north of North Dakota and Minnesota. When averaged over North America, first stroke negative median peak currents range from 19.8 kA in 2001 to 16.0 kA in 2009 and for all years, average 16.1 kA. First stroke positive median peak currents range from a high of 29.0 kA in 2008 and 2009 to a low of 23.3 kA in 2003 with a median of 25.7 kA for all years. There is a relatively sharp transition from low to high median negative peak currents along the Gulf and Atlantic coasts of the United States. No sharp transitions are observed for the median positive peak currents. Relatively lower positive peak currents occur throughout the southeastern United States. The highest values of mean negative multiplicity exceed 3.0 strokes per flash in the NALDN with some variation over the 9 yr. Lower values of mean negative multiplicity occur in the western United States. Positive flash mean multiplicity is slightly higher than 1.1, with the highest values of 1.7 observed in the southwestern states. As has been noted in prior research, CG lightning has significant variations from storm to storm as well as between geographical regions and/or seasons and, consequently, a single distribution for any lightning parameter, such as multiplicity or peak current, may not be sufficient to represent or describe the parameter.


2015 ◽  
Vol 54 (3) ◽  
pp. 643-657 ◽  
Author(s):  
Jonny W. Malloy ◽  
Daniel S. Krahenbuhl ◽  
Chad E. Bush ◽  
Robert C. Balling ◽  
Michael M. Santoro ◽  
...  

AbstractThis study explores long-term deviations from wind averages, specifically near the surface across central North America and adjoining oceans (25°–50°N, 60°–130°W) for 1979–2012 (408 months) by utilizing the North American Regional Reanalysis 10-m wind climate datasets. Regions where periods of anomalous wind speeds were observed (i.e., 1 standard deviation below/above both the long-term mean annual and mean monthly wind speeds at each grid point) were identified. These two climatic extremes were classified as wind lulls (WLs; below) or wind blows (WBs; above). Major findings for the North American study domain indicate that 1) mean annual wind speeds range from 1–3 m s−1 (Intermountain West) to over 7 m s−1 (offshore the East and West Coasts), 2) mean durations for WLs and WBs are high for much of the southeastern United States and for the open waters of the North Atlantic Ocean, respectively, 3) the longest WL/WB episodes for the majority of locations have historically not exceeded 5 months, 4) WLs and WBs are most common during June and October, respectively, for the upper Midwest, 5) WLs are least frequent over the southwestern United States during the North American monsoon, and 6) no significant anomalous wind trends exist over land or sea.


Atmosphere ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 793 ◽  
Author(s):  
Yu-Tang Chien ◽  
S.-Y. Simon Wang ◽  
Yoshimitsu Chikamoto ◽  
Steve L. Voelker ◽  
Jonathan D. D. Meyer ◽  
...  

In recent years, a pair of large-scale circulation patterns consisting of an anomalous ridge over northwestern North America and trough over northeastern North America was found to accompany extreme winter weather events such as the 2013–2015 California drought and eastern U.S. cold outbreaks. Referred to as the North American winter dipole (NAWD), previous studies have found both a marked natural variability and a warming-induced amplification trend in the NAWD. In this study, we utilized multiple global reanalysis datasets and existing climate model simulations to examine the variability of the winter planetary wave patterns over North America and to better understand how it is likely to change in the future. We compared between pre- and post-1980 periods to identify changes to the circulation variations based on empirical analysis. It was found that the leading pattern of the winter planetary waves has changed, from the Pacific–North America (PNA) mode to a spatially shifted mode such as NAWD. Further, the potential influence of global warming on NAWD was examined using multiple climate model simulations.


2007 ◽  
Vol 85 (3) ◽  
pp. 342-346 ◽  
Author(s):  
J. Kout ◽  
J. Vlasák

The polypore Trametes gibbosa (Pers.) Fries, common in Europe and Asia, is reported from eastern North America for the first time. Single basidiospore cultures from Pennsylvania, United States, and Quebec, Canada, were paired with each other and with cultures from the Czech Republic. The North American intercollection crosses were 60% compatible and 100% compatible with the Czech cultures. All the crosses among the Czech cultures were 100% compatible. The recent introduction of T. gibbosa to North America is suggested as a possible explanation for the limited number of mating-type alleles and subsequent incompatibility among the North American cultures.


Sign in / Sign up

Export Citation Format

Share Document