scholarly journals Contribution of Cutoff Lows to Precipitation across the United States

2016 ◽  
Vol 55 (4) ◽  
pp. 893-899 ◽  
Author(s):  
John T. Abatzoglou

AbstractA chronology of cutoff lows (COL) from 1979 to 2014 alongside daily precipitation observations across the conterminous United States was used to examine the contribution of COL to seasonal precipitation, extreme-precipitation events, and interannual precipitation variability. COL accounted for between 2% and 32% of annual precipitation at stations across the United States, with distinct geographic and seasonal variability. The largest fractional contribution of COL to precipitation totals and precipitation extremes was found across the Great Plains and the interior western United States, particularly during the transition seasons of spring and autumn. Widespread significant correlations between seasonal COL precipitation and total precipitation on interannual time scales were found across parts of the United States, most notably to explain spring precipitation variability in the interior western United States and Great Plains and summer precipitation variability in the northwestern United States. In addition to regional differences, a distinct gradient in the contributions of COL to precipitation was found in the lee of large mountain ranges in the western United States. Differences in orographic precipitation enhancement associated with slow-moving COL resulted in relatively more precipitation at lower elevations and, in particular, east of north–south-oriented mountain ranges that experience a strong rain shadow with progressive disturbances.

2010 ◽  
Vol 23 (10) ◽  
pp. 2585-2598 ◽  
Author(s):  
Alfredo Ruiz-Barradas ◽  
Sumant Nigam

Abstract The present study assesses the potential of the U.S. Climate Variability and Predictability (CLIVAR) Drought Working Group (DWG) models in simulating interannual precipitation variability over North America, especially the Great Plains. It also provides targets for the idealized DWG model experiments investigating drought origin. The century-long Atmospheric Model Intercomparison Project (AMIP) simulations produced by version 3.5 of NCAR’s Community Atmosphere Model (CAM3.5), the Lamont-Doherty Earth Observatory’s Community Climate Model (CCM3), and NASA’s Seasonal-to-Interannual Prediction Project (NSIPP-1) atmospheric models are analyzed; CCM3 and NSIPP-1 models have 16- and 14-ensemble simulations, respectively, while CAM3.5 only has 1. The standard deviation of summer precipitation is different in AMIP simulations. The maximum over the central United States seen in observations is placed farther to the west in simulations. Over the central plains the models exhibit modest skill in simulating low-frequency precipitation variability, a Palmer drought severity index proxy. The presence of a linear trend increases correlations in the period 1950–99 when compared with those for the whole century. The SST links of the Great Plains drought index have features in common with observations over both the Pacific and Atlantic Oceans. Interestingly, summer-to-fall precipitation regressions of the warm Trend, cold Pacific, and warm Atlantic modes of annual mean SST variability (used in forcing the DWG idealized model experiments) tend to dry the southwestern, midwestern, and southeastern regions of the United States in the observations and, to a lesser extent, in the simulations. The similarity of the idealized SST-forced droughts in DWG modeling experiments with AMIP precipitation regressions of the corresponding SST principal components, evident especially in the case of the cold Pacific pattern, suggests that the routinely conducted AMIP simulations could have served as an effective proxy for the more elaborated suite of DWG modeling experiments.


2018 ◽  
Vol 19 (4) ◽  
pp. 643-658 ◽  
Author(s):  
Paul X. Flanagan ◽  
Jeffrey B. Basara ◽  
Jason C. Furtado ◽  
Xiangming Xiao

Abstract Precipitation variability has increased in recent decades across the Great Plains (GP) of the United States. Drought and its associated drivers have been studied in the GP region; however, periods of excessive precipitation (pluvials) at seasonal to interannual scales have received less attention. This study narrows this knowledge gap with the overall goal of understanding GP precipitation variability during pluvial periods. Through composites of relevant atmospheric variables from the ECMWF twentieth-century reanalysis (ERA-20C), key differences between southern Great Plains (SGP) and northern Great Plains (NGP) pluvial periods are highlighted. The SGP pluvial pattern shows an area of negative height anomalies over the southwestern United States with wind anomalies consistent with frequent synoptic wave passages along a southward-shifted North Pacific jet. The NGP pattern during pluvial periods, by contrast, depicts anomalously low heights in the northwestern United States and an anomalously extended Pacific jet. Analysis of daily heavy precipitation events reveals the key drivers for these pluvial events, namely, an east–west height gradient and associated stronger poleward moisture fluxes. Therefore, the results show that pluvial years over the GP are likely driven by synoptic-scale processes rather than by anomalous seasonal precipitation driven by longer time-scale features. Overall, the results present a possible pathway to predicting the occurrence of pluvial years over the GP and understanding the causes of GP precipitation variability, potentially mitigating the threats of water scarcity and excesses for the public and agricultural sectors.


2007 ◽  
Vol 20 (8) ◽  
pp. 1468-1486 ◽  
Author(s):  
Alan F. Hamlet ◽  
Philip W. Mote ◽  
Martyn P. Clark ◽  
Dennis P. Lettenmaier

Abstract A physically based hydrology model is used to produce time series for the period 1916–2003 of evapotranspiration (ET), runoff, and soil moisture (SM) over the western United States from which long-term trends are evaluated. The results show that trends in ET in spring and summer are determined primarily by trends in precipitation and snowmelt that determine water availability. From April to June, ET trends are mostly positive due primarily to earlier snowmelt and earlier emergence of snow-free ground, and secondarily to increasing trends in spring precipitation. From July to September trends in ET are more strongly influenced by precipitation trends, with the exception of areas (most notably California) that receive little summer precipitation and have experienced large changes in snowmelt timing. Trends in the seasonal timing of ET are modest, but during the period 1947–2003 when temperature trends are large, they reflect a shift of ET from midsummer to early summer and late spring. As in other studies, it is found that runoff is occurring earlier in spring, a trend that is related primarily to increasing temperature, and is most apparent during 1947–2003. Trends in the annual runoff ratio, a variable critical to western water management, are determined primarily by trends in cool season precipitation, rather than changes in the timing of runoff or ET. It was found that the signature of temperature-related trends in runoff and SM is strongly keyed to mean midwinter [December–February (DJF)] temperatures. Areas with warmer winter temperatures show increasing trends in the runoff fraction as early as February, and colder areas as late as June. Trends toward earlier spring SM recharge are apparent and increasing trends in SM on 1 April are evident over much of the region. The 1 July SM trends are less affected by snowmelt changes and are controlled more by precipitation trends.


2020 ◽  
Vol 21 (6) ◽  
pp. 1207-1221 ◽  
Author(s):  
Maryam A. Lamjiri ◽  
F. Martin Ralph ◽  
Michael D. Dettinger

AbstractExtraordinary precipitation events have impacted the United States recently, including Hurricanes Harvey (2017) and Florence (2018), with 3-day precipitation totals larger than any others reported in the United States during the past 70 years. The rainfall category (R-CAT) scaling method is used here to document extreme precipitation events and test for trends nationally. The R-CAT scale uses thresholds of 3-day precipitation total in 100-mm increments (starting with 200 mm) that do not vary temporally or geographically, allowing for simple, intuitive comparisons of extremes over space and time. The paper that introduced the scale only required levels 1–4 to represent historical extremes, finding that R-CATs 3–4 strike the conterminous United States about as frequently as EF 4–5 tornadoes or category 3–5 hurricanes. Remarkably, Florence and Harvey require extending the scale to R-CAT 7 and 9, respectively. Trend analyses of annual maximum 3-day totals (1950–2019) here identify significant increases in the eastern United States, along with declines in Northern California and Oregon. Consistent with these results, R-CAT storms have been more frequent in the eastern, and less frequent in western, United States during the past decade compared to 1950–2008. Tropical storms dominate R-CAT events along the southeastern coast and East Coast with surprising contributions from atmospheric rivers, while atmospheric rivers completely dominate along the West Coast.


2021 ◽  
Vol 3 ◽  
Author(s):  
Kevin A. Grady ◽  
Liang Chen ◽  
Trent W. Ford

Spring and summer precipitation are both important factors for agricultural productivity in the Midwest region of the United States. Adequate summer precipitation, particularly in the reproductive and grain fill stages in July and August, is critical to corn and soybean success. Meanwhile, excessive spring precipitation can cause significant planting delays and introduces challenges with weed and pest management, and soil erosion and compaction. However, uncertainty especially in future summer precipitation changes, translates to uncertainties in how the joint distributions of spring and summer precipitation are expected to change by mid- and late-century across the Midwest. This study examines historical and projected changes in the characteristics of spring and summer precipitation in the Midwest using 12 dynamically downscaled simulations under the high-emission representative concentration pathway (RCP 8.5) from the NA-CORDEX project. Historical increases in spring precipitation and precipitation intensity are projected to continue into the mid- and late-century across the region, with strong model agreement. By comparison, projected changes in Midwest summer precipitation are more modest than for spring and have much less model agreement. Despite a projected three- to four-fold increase in the frequency of wet springs by late-century, relative to the model ensemble historical average, the lack of substantial and robust projected change in summer precipitation results in only a small increase in the risk of dry summers following wet springs in the Midwest by mid- and late-century.


2010 ◽  
Vol 23 (23) ◽  
pp. 6409-6429 ◽  
Author(s):  
Alfredo Ruiz-Barradas ◽  
Sumant Nigam

Abstract The present work assesses spring and summer precipitation over North America as well as summer precipitation variability over the central United States and its SST links in simulations of the twentieth-century climate and projections of the twenty-first- and twenty-second-century climates for the A1B scenario. The observed spatial structure of spring and summer precipitation poses a challenge for models, particularly over the western and central United States. Tendencies in spring precipitation in the twenty-first century agree with the observed ones at the end of the twentieth century over a wetter north-central and a drier southwestern United States, and a drier southeastern Mexico. Projected wetter springs over the Great Plains in the twenty-first and twenty-second centuries are associated with an increase in the number of extreme springs. In contrast, projected summer tendencies have demonstrated little consistency. The associated observed changes in SSTs bear the global warming footprint, which is not well captured in the twentieth-century climate simulations. Precipitation variability over the Great Plains presents a coherent picture in spring but not in summer. Models project an increase in springtime precipitation variability owing to an increased number of extreme springs. The number of extreme droughty (pluvial) events during the spring–fall part of the year is under(over)estimated in the twentieth century without consistent projections. Summer precipitation variability over the Great Plains is linked to SSTs over the Pacific and Atlantic Oceans, with no apparent ENSO link in spite of the exaggerated variability in the equatorial Pacific in climate simulations; this has been identified already in observations and atmospheric models forced with historical SSTs. This link is concealed due to the increased warming in the twenty-first century. Deficiencies in land surface–atmosphere interactions and global teleconnections in the climate models prevent them from a better portrayal of summer precipitation variability in the central United States.


Author(s):  
Jennifer J. Smith

Coherence of place often exists alongside irregularities in time in cycles, and chapter three turns to cycles linked by temporal markers. Ray Bradbury’s The Martian Chronicles (1950) follows a linear chronology and describes the exploration, conquest, and repopulation of Mars by humans. Conversely, Louise Erdrich’s Love Medicine (1984) jumps back and forth across time to narrate the lives of interconnected families in the western United States. Bradbury’s cycle invokes a confluence of historical forces—time as value-laden, work as a calling, and travel as necessitating standardized time—and contextualizes them in relation to anxieties about the space race. Erdrich’s cycle invokes broader, oppositional conceptions of time—as recursive and arbitrary and as causal and meaningful—to depict time as implicated in an entire system of measurement that made possible the destruction and exploitation of the Chippewa people. Both volumes understand the United States to be preoccupied with imperialist impulses. Even as they critique such projects, they also point to the tenacity with which individuals encounter these systems, and they do so by creating “interstitial temporalities,” which allow them to navigate time at the crossroads of language and culture.


Author(s):  
Kathryn T Duncan ◽  
Meriam N Saleh ◽  
Kellee D Sundstrom ◽  
Susan E Little

Abstract Throughout North America, Dermacentor spp. ticks are often found feeding on animals and humans, and are known to transmit pathogens, including the Rocky Mountain spotted fever agent. To better define the identity and distribution of Dermacentor spp. removed from dogs and cats in the United States, ticks submitted from 1,457 dogs (n = 2,924 ticks) and 137 cats (n = 209 ticks) from veterinary practices in 44/50 states from February 2018-January 2020 were identified morphologically (n = 3,133); the identity of ticks from regions where Dermacentor andersoni (Stiles) have been reported, and a subset of ticks from other regions, were confirmed molecularly through amplification and sequencing of the ITS2 region and a 16S rRNA gene fragment. Of the ticks submitted, 99.3% (3,112/3,133) were Dermacentor variabilis (Say), 0.4% (12/3,133) were D. andersoni, and 0.3% (9/3,133) were Dermacentor albipictus (Packard). While translocation of pets prior to tick removal cannot be discounted, the majority (106/122; 87%) of Dermacentor spp. ticks removed from dogs and cats in six Rocky Mountain states (Montana, Idaho, Wyoming, Nevada, Utah, and Colorado) were D. variabilis, suggesting this species may be more widespread in the western United States than is currently recognized, or that D. andersoni, if still common in the region, preferentially feeds on hosts other than dogs and cats. Together, these data support the interpretation that D. variabilis is the predominant Dermacentor species found on pets throughout the United States, a finding that may reflect recent shifts in tick distribution.


Sign in / Sign up

Export Citation Format

Share Document