scholarly journals Connecting Microphysical Processes in Colorado Winter Storms with Vertical Profiles of Radar Observations

2016 ◽  
Vol 55 (8) ◽  
pp. 1771-1787 ◽  
Author(s):  
Robert S. Schrom ◽  
Matthew R. Kumjian

AbstractTo better connect radar observations to microphysical processes, the authors analyze concurrent polarimetric radar observations at vertical incidence and roughly side incidence during the Front Range Orographic Storms (FROST) project. Data from three events show signatures of riming, aggregation, and dendritic growth. Riming and the growth of graupel are suggested by negative differential reflectivity ZDR and vertically pointing Doppler velocity magnitude |VR| > 2.0 m s−1; aggregation is indicated by maxima in the downward-relative gradient of radar reflectivity at horizontal polarization ZH below the −15°C isotherm and positive downward-relative gradients in |VR| when averaged over time. A signature of positive downward-relative gradients in ZH, negative downward-relative gradients in |VR|, and maxima in ZDR is observed near −15°C during all three events. This signature may be indicative of dendritic growth; preexisting, thick platelike crystals fall faster and grow slower than dendrites, allowing for |VR| to shift toward the slower-falling, rapidly growing dendrites. To test this hypothesis, simplified calculations of the ZH and |VR| gradients are performed for a range of terminal fall speeds of dendrites and isometric crystals. The authors prescribe linear profiles of ZH for the dendrites and isometric crystals, with the resulting profiles and gradients of |VR| determined from a range of particle fall speeds. Both the observed ZH and |VR| gradients are reproduced by the calculations for a large range of fall speeds. However, more observational data are needed to fully constrain these calculations and reject or support explanations for this signature.

2015 ◽  
Vol 54 (12) ◽  
pp. 2365-2388 ◽  
Author(s):  
Robert S. Schrom ◽  
Matthew R. Kumjian ◽  
Yinghui Lu

AbstractX-band polarimetric radar observations of winter storms in northeastern Colorado on 20–21 February, 9 March, and 9 April 2013 are examined. These observations were taken by the Colorado State University–University of Chicago–Illinois State Water Survey (CSU-CHILL) radar during the Front Range Orographic Storms (FROST) project. The polarimetric radar moments of reflectivity factor at horizontal polarization ZH, differential reflectivity ZDR, and specific differential phase KDP exhibited a range of signatures at different times near the −15°C temperature level favored for dendritic ice crystal growth. In general, KDP was enhanced in these regions with ZDR decreasing and ZH increasing toward the ground, suggestive of aggregation (or riming). The largest ZDR values (~3.5–5.5 dB) were observed during periods of significant low-level upslope flow. Convective features observed when the upslope flow was weaker had the highest KDP (>1.5° km−1) and ZH (>20 dBZ) values. Electromagnetic scattering calculations using the generalized multiparticle Mie method were used to determine whether these radar signatures were consistent with dendrites. Particle size distributions (PSDs) of dendrites were retrieved for a variety of cases using these scattering calculations and the radar observations. The PSDs derived using stratiform precipitation observations were found to be reasonably consistent with previous PSD observations. PSDs derived where riming may have occurred likely had errors and deviated significantly from these previous PSD observations. These results suggest that this polarimetric radar signature may therefore be useful in identifying regions of rapidly collecting dendrites, after considering the effects of riming on the radar variables.


2013 ◽  
Vol 52 (11) ◽  
pp. 2549-2566 ◽  
Author(s):  
Matthew R. Kumjian ◽  
Alexander V. Ryzhkov ◽  
Heather D. Reeves ◽  
Terry J. Schuur

AbstractPolarimetric radar measurements in winter storms that produce ice pellets have revealed a unique signature that is indicative of ongoing hydrometeor refreezing. This refreezing signature is observed within the low-level subfreezing air as an enhancement of differential reflectivity ZDR and specific differential phase KDP and a decrease of radar reflectivity factor at horizontal polarization ZH and copolar correlation coefficient ρhv. It is distinct from the overlying melting-layer “brightband” signature and suggests that unique microphysical processes are occurring within the layer of hydrometeor refreezing. The signature is analyzed for four ice-pellet cases in central Oklahoma as observed by two polarimetric radars. A statistical analysis is performed on the characteristics of the refreezing signature for a case of particularly long duration. Several hypotheses are presented to explain the appearance of the signature, along with a summary of the pros and cons for each. It is suggested that preferential freezing of small drops and local ice generation are plausible mechanisms for the appearance of the ZDR and KDP enhancements. Polarimetric measurements and scattering calculations are used to retrieve microphysical information to explore the validity of the hypotheses. The persistence and repetitiveness of the signature suggest its potential use in operational settings to diagnose the transition between freezing rain and ice pellets.


2020 ◽  
Vol 59 (4) ◽  
pp. 751-767 ◽  
Author(s):  
Erica M. Griffin ◽  
Terry J. Schuur ◽  
Alexander V. Ryzhkov

AbstractQuasi-vertical profiles (QVPs) obtained from a database of U.S. WSR-88D data are used to document polarimetric characteristics of the melting layer (ML) in cold-season storms with high vertical resolution and accuracy. A polarimetric technique to define the top and bottom of the ML is first introduced. Using the QVPs, statistical relationships are developed to gain insight into the evolution of microphysical processes above, within, and below the ML, leading to a statistical polarimetric model of the ML that reveals characteristics that reflectivity data alone are not able to provide, particularly in regions of weak reflectivity factor at horizontal polarization ZH. QVP ML statistics are examined for two regimes in the ML data: ZH ≥ 20 dBZ and ZH < 20 dBZ. Regions of ZH ≥ 20 dBZ indicate locations of MLs collocated with enhanced differential reflectivity ZDR and reduced copolar correlation coefficient ρhv, while for ZH < 20 dBZ a well-defined ML is difficult to discern using ZH alone. Evidence of large ZDR up to 4 dB, backscatter differential phase δ up to 8°, and low ρhv down to 0.80 associated with lower ZH (from −10 to 20 dBZ) in the ML is observed when pristine, nonaggregated ice falls through it. Positive correlation is documented between maximum specific differential phase KDP and maximum ZH in the ML; these are the first QVP observations of KDP in MLs documented at S band. Negative correlation occurs between minimum ρhv in the ML and ML depth and between minimum ρhv in the ML and the corresponding enhancement of ZH (ΔZH = ZHmax − ZHrain).


2014 ◽  
Vol 71 (8) ◽  
pp. 3052-3067 ◽  
Author(s):  
Matthew R. Kumjian ◽  
Olivier P. Prat

Abstract The impact of the collisional warm-rain microphysical processes on the polarimetric radar variables is quantified using a coupled microphysics–electromagnetic scattering model. A one-dimensional bin-microphysical rain shaft model that resolves explicitly the evolution of the drop size distribution (DSD) under the influence of collisional coalescence and breakup, drop settling, and aerodynamic breakup is coupled with electromagnetic scattering calculations that simulate vertical profiles of the polarimetric radar variables: reflectivity factor at horizontal polarization ZH, differential reflectivity ZDR, and specific differential phase KDP. The polarimetric radar fingerprint of each individual microphysical process is quantified as a function of the shape of the initial DSD and for different values of nominal rainfall rate. Results indicate that individual microphysical processes (collisional processes, evaporation) display a distinctive signature and evolve within specific areas of ZH–ZDR and ZDR–KDP space. Furthermore, a comparison of the resulting simulated vertical profiles of the polarimetric variables with radar and disdrometer observations suggests that bin-microphysical parameterizations of drop breakup most frequently used are overly aggressive for the largest rainfall rates, resulting in very “tropical” DSDs heavily skewed toward smaller drops.


2018 ◽  
Vol 57 (1) ◽  
pp. 31-50 ◽  
Author(s):  
Erica M. Griffin ◽  
Terry J. Schuur ◽  
Alexander V. Ryzhkov

AbstractThis study implements a new quasi-vertical profile (QVP) methodology to investigate the microphysical evolution and significance of intriguing winter polarimetric signatures and their statistical correlations. QVPs of transitional stratiform and pure snow precipitation are analyzed using WSR-88D S-band data, alongside their corresponding environmental thermodynamic High-Resolution Rapid Refresh model analyses. QVPs of KDP and ZDR are implemented to demonstrate their value in interpreting elevated ice processes. Several fascinating and repetitive signatures are observed in the QVPs for differential reflectivity ZDR and specific differential phase KDP, in the dendritic growth layer (DGL), and at the tops of clouds. The most striking feature is maximum ZDR (up to 6 dB) in the DGL occurring near the −10-dBZ ZH contour within low KDP and during shallower and warmer cloud tops. Conversely, maximum KDP (up to 0.3° km−1) in the DGL occurs within low ZDR and during taller and colder cloud tops. Essentially, ZDR and KDP in the DGL are anticorrelated and strongly depend on cloud-top temperature. Analyses also show correlations indicating larger ZDR within lower ZH in the DGL and larger KDP within greater ZH in the DGL. The high-ZDR regions are likely dominated by growth of a mixture of highly oblate dendrites and/or hexagonal plates, or prolate needles. Regions of high KDP are expected to be overwhelmed with snow aggregates and crystals with irregular or nearly spherical shapes, seeded at cloud tops. Furthermore, QVP indications of hexagonal plate crystals within the DGL are verified using in situ microphysical measurements, demonstrating the reliability of QVPs in evaluating ice microphysics in upper regions of winter clouds.


2017 ◽  
Vol 145 (6) ◽  
pp. 2303-2323 ◽  
Author(s):  
Kara J. Sulia ◽  
Matthew R. Kumjian

Abstract A new adaptive habit model (AHM) grows ice crystals through vapor deposition while evolving ice particle properties, including shape and effective density. The AHM provides an opportunity to investigate observed microphysical processes through the computation of polarimetric variables and corroboration with microphysical model output. This study is unique because the polarimetric scattering calculations are computed using predicted microphysical parameters rather than a priori assumptions that are imposed within the scattering calculations in the forward simulator, allowing for a more effective comparison to radar observations. Through the simulation of a case in the Front Range of the Rocky Mountains in Colorado using the Advanced Research version of the Weather Research and Forecasting Model, it is found that the AHM approximates ice mass, shape, cloud vertical structure, and temporal evolution as reflected through polarimetric quantities compared to observations. AHM reflectivity magnitudes are similar to those observed with radar and are an improvement over spherical ice crystal assumptions. Further analyses are completed to examine the effect of microphysical processes on the evolution of the differential reflectivity and specific differential phase, both of which are simulated using the AHM. Simulations reveal a polarimetric response to ice crystal mass, number, size, density, and aspect ratio. While results reveal the need for model improvements (e.g., parameterizations for aggregation rate), testing forward-simulated radar fields against observations is a first step in the validation of model microphysical and precipitation processes.


2016 ◽  
Vol 55 (2) ◽  
pp. 403-424 ◽  
Author(s):  
Mariko Oue ◽  
Michele Galletti ◽  
Johannes Verlinde ◽  
Alexander Ryzhkov ◽  
Yinghui Lu

AbstractMicrophysical processes in shallow Arctic precipitation clouds are illustrated using measurements of differential reflectivity ZDR from the U.S. Department of Energy Atmospheric Radiation Measurement Program polarimetric X-band radar deployed in Barrow, Alaska. X-band hemispheric range height indicator scans used in conjunction with Ka-band radar and lidar measurements revealed prolonged periods dominated by vapor depositional, riming, and/or aggregation growth. In each case, ice precipitation fell through at least one liquid-cloud layer in a seeder–feeder situation before reaching the surface. A long period of sustained low radar reflectivity ZH (<0–5 dBZ) and high ZDR (6–7.5 dB) throughout the depth of the cloud and subcloud layer, coinciding with observations of large pristine dendrites at the surface, suggests vapor depositional growth of large dendrites at low number concentrations. In contrast, ZDR values decreased to 2–3 dB in the mean profile when surface precipitation was dominated by aggregates or rimed dendrites. Small but consistent differences in zenith Ka-band radar Doppler velocity and lidar depolarization measurements were found between aggregation- and riming-dominated periods. The clean Arctic environment can enhance ZDR signals relative to more complex midlatitude cases, producing higher values.


2011 ◽  
Vol 50 (4) ◽  
pp. 844-858 ◽  
Author(s):  
Patrick C. Kennedy ◽  
Steven A. Rutledge

AbstractThis study is based on analyses of dual-polarization radar observations made by the 11-cm-wavelength Colorado State University–University of Chicago–Illinois State Water Survey (CSU–CHILL) system during four significant winter storms in northeastern Colorado. It was found that values of specific differential phase KDP often reached local maxima of ∼0.15°–0.4° km−1 in an elevated layer near the −15°C environmental temperature isotherm. The passage of these elevated positive KDP areas is shown to be linked to increased surface precipitation rates. Calculations using a microwave scattering model indicate that populations of highly oblate ice particles with moderate bulk densities and diameters in the ∼0.8–1.2-mm range can generate KDP (and differential reflectivity ZDR) values that are consistent with the radar observations. The persistent correlation between the enhanced KDP level and the −15°C temperature regime suggests that rapidly growing dendrites likely played a significant role in the production of the observed KDP patterns. The detection of organized regions of S-band KDP values greater than ∼0.1°–0.2° km−1 in winter storms may therefore be useful in identifying regions of active dendritic particle growth, as a precursor to aggregate snowfall.


2014 ◽  
Vol 53 (6) ◽  
pp. 1636-1658 ◽  
Author(s):  
Matthew R. Kumjian ◽  
Steven A. Rutledge ◽  
Roy M. Rasmussen ◽  
Patrick C. Kennedy ◽  
Mike Dixon

AbstractHigh-resolution X-band polarimetric radar data were collected in 19 snowstorms over northern Colorado in early 2013 as part of the Front Range Orographic Storms (FROST) project. In each case, small, vertically erect convective turrets were observed near the echo top. These “generating cells” are similar to those reported in the literature and are characterized by ~1-km horizontal and vertical dimensions, vertical velocities of 1–2 m s−1, and lifetimes of at least 10 min. In some cases, these generating cells are enshrouded by enhanced differential reflectivity ZDR, indicating a “shroud” of pristine crystals enveloping the larger, more isotropic particles. The anticorrelation of radar reflectivity factor at horizontal polarization ZH and ZDR suggests ongoing aggregation or riming of particles in the core of generating cells. For cases in which radiosonde data were collected, potential instability was found within the layer in which generating cells were observed. The persistence of these layers suggests that radiative effects are important, perhaps by some combination of cloud-top cooling and release of latent enthalpy through depositional and riming growth of particles within the cloud. The implications for the ubiquity of generating cells and their role as a mechanism for ice crystal initiation and growth are discussed.


2011 ◽  
Vol 50 (4) ◽  
pp. 859-872 ◽  
Author(s):  
Valery M. Melnikov ◽  
Dusan S. Zrnić ◽  
Richard J. Doviak ◽  
Phillip B. Chilson ◽  
David B. Mechem ◽  
...  

AbstractSounding of nonprecipitating clouds with the 10-cm wavelength Weather Surveillance Radar-1988 Doppler (WSR-88D) is discussed. Readily available enhancements to signal processing and volume coverage patterns of the WSR-88D allow observations of a variety of clouds with reflectivities as low as −25 dBZ (at a range of 10 km). The high sensitivity of the WSR-88D, its wide velocity and unambiguous range intervals, and the absence of attenuation allow accurate measurements of the reflectivity factor, Doppler velocity, and spectrum width fields in clouds to ranges of about 50 km. Fields of polarimetric variables in clouds, observed with a research polarimetric WSR-88D, demonstrate an abundance of information and help to resolve Bragg and particulate scatter. The scanning, Doppler, and polarimetric capabilities of the WSR-88D allow real-time, three-dimensional mapping of cloud processes, such as transformations of hydrometeors between liquid and ice phases. The presence of ice particles is revealed by high differential reflectivities and the lack of correlation between reflectivity and differential reflectivity in clouds in contrast to that found for rain. Pockets of high differential reflectivities are frequently observed in clouds; maximal values of differential reflectivity exceed 8 dB, far above the level observed in rain. The establishment of the WSR-88D network consisting of 157 polarimetric radars can be used to collect cloud data at any radar site, making the network a potentially powerful tool for climatic studies.


Sign in / Sign up

Export Citation Format

Share Document