scholarly journals A Polarimetric Analysis of Ice Microphysical Processes in Snow, Using Quasi-Vertical Profiles

2018 ◽  
Vol 57 (1) ◽  
pp. 31-50 ◽  
Author(s):  
Erica M. Griffin ◽  
Terry J. Schuur ◽  
Alexander V. Ryzhkov

AbstractThis study implements a new quasi-vertical profile (QVP) methodology to investigate the microphysical evolution and significance of intriguing winter polarimetric signatures and their statistical correlations. QVPs of transitional stratiform and pure snow precipitation are analyzed using WSR-88D S-band data, alongside their corresponding environmental thermodynamic High-Resolution Rapid Refresh model analyses. QVPs of KDP and ZDR are implemented to demonstrate their value in interpreting elevated ice processes. Several fascinating and repetitive signatures are observed in the QVPs for differential reflectivity ZDR and specific differential phase KDP, in the dendritic growth layer (DGL), and at the tops of clouds. The most striking feature is maximum ZDR (up to 6 dB) in the DGL occurring near the −10-dBZ ZH contour within low KDP and during shallower and warmer cloud tops. Conversely, maximum KDP (up to 0.3° km−1) in the DGL occurs within low ZDR and during taller and colder cloud tops. Essentially, ZDR and KDP in the DGL are anticorrelated and strongly depend on cloud-top temperature. Analyses also show correlations indicating larger ZDR within lower ZH in the DGL and larger KDP within greater ZH in the DGL. The high-ZDR regions are likely dominated by growth of a mixture of highly oblate dendrites and/or hexagonal plates, or prolate needles. Regions of high KDP are expected to be overwhelmed with snow aggregates and crystals with irregular or nearly spherical shapes, seeded at cloud tops. Furthermore, QVP indications of hexagonal plate crystals within the DGL are verified using in situ microphysical measurements, demonstrating the reliability of QVPs in evaluating ice microphysics in upper regions of winter clouds.

2020 ◽  
Vol 12 (24) ◽  
pp. 4061
Author(s):  
Jeong-Eun Lee ◽  
Sung-Hwa Jung ◽  
Soohyun Kwon

Bright band (BB) characteristics obtained via dual-polarization weather radars elucidate thermodynamic and microphysical processes within precipitation systems. This study identified BB using morphological features from quasi-vertical profiles (QVPs) of polarimetric observations, and their geometric, thermodynamic, and polarimetric characteristics were statistically examined using nine operational S-band weather radars in South Korea. For comparable analysis among weather radars in the network, the calibration biases in reflectivity (ZH) and differential reflectivity (ZDR) were corrected based on self-consistency. The cross-correlation coefficient (ρHV) bias in the weak echo regions was corrected using the signal-to-noise ratio (SNR). First, we analyzed the heights of BBPEAK derived from the ZH as a function of season and compared the heights of BBPEAK derived from the ZH, ZDR, and ρHV. The heights of BBPEAK were highest in the summer season when the surface temperature was high. However, they showed distinct differences depending on the location (e.g., latitude) within the radar network, even in the same season. The height where the size of melting particles was at a maximum (BBPEAK from the ZH) was above that where the oblateness of these particles maximized (BBPEAK from ZDR). The height at which the inhomogeneity of hydometeors was at maximum (BBPEAK from the ρHV) was also below that of BBPEAK from the ZH. Second, BB thickness and relative position of BBPEAK were investigated to characterize the geometric structure of the BBs. The BB thickness increased as the ZH at BBBOTTOM increased, which indicated that large snowflakes melt more slowly than small snowflakes. The geometrical structure of the BBs was asymmetric, since the melting particles spent more time forming the thin shell of meltwater around them, and they rapidly collapsed to form a raindrop at the final stage of melting. Third, the heights of BBTOP, BBPEAK, and BBBOTTOM were compared with the zero-isotherm heights. The dry-temperature zero-isotherm heights were between BBTOP and BBBOTTOM, while the wet-bulb temperature zero-isotherm heights were close to the height of BBPEAK. Finally, we examined the polarimetric observations to understand the involved microphysical processes. The correlation among ZH at BBTOP, BBPEAK, and BBBOTTOM was high (>0.94), and the ZDR at BBBOTTOM was high when the BB’s intensity was strong. This proved that the size and concentration of snowflakes above the BB influence the size and concentration of raindrops below the BB. There was no depression in the ρHV for a weak BB. Finally, the mean profile of the ZH and ZDR depended on the ZH at BBBOTTOM. In conclusion, the growth process of snowflakes above the BB controls polarimetric observations of BB.


2014 ◽  
Vol 71 (8) ◽  
pp. 3052-3067 ◽  
Author(s):  
Matthew R. Kumjian ◽  
Olivier P. Prat

Abstract The impact of the collisional warm-rain microphysical processes on the polarimetric radar variables is quantified using a coupled microphysics–electromagnetic scattering model. A one-dimensional bin-microphysical rain shaft model that resolves explicitly the evolution of the drop size distribution (DSD) under the influence of collisional coalescence and breakup, drop settling, and aerodynamic breakup is coupled with electromagnetic scattering calculations that simulate vertical profiles of the polarimetric radar variables: reflectivity factor at horizontal polarization ZH, differential reflectivity ZDR, and specific differential phase KDP. The polarimetric radar fingerprint of each individual microphysical process is quantified as a function of the shape of the initial DSD and for different values of nominal rainfall rate. Results indicate that individual microphysical processes (collisional processes, evaporation) display a distinctive signature and evolve within specific areas of ZH–ZDR and ZDR–KDP space. Furthermore, a comparison of the resulting simulated vertical profiles of the polarimetric variables with radar and disdrometer observations suggests that bin-microphysical parameterizations of drop breakup most frequently used are overly aggressive for the largest rainfall rates, resulting in very “tropical” DSDs heavily skewed toward smaller drops.


2016 ◽  
Vol 33 (3) ◽  
pp. 551-562 ◽  
Author(s):  
Alexander Ryzhkov ◽  
Pengfei Zhang ◽  
Heather Reeves ◽  
Matthew Kumjian ◽  
Timo Tschallener ◽  
...  

AbstractA novel methodology is introduced for processing and presenting polarimetric data collected by weather surveillance radars. It involves azimuthal averaging of radar reflectivity Z, differential reflectivity ZDR, cross-correlation coefficient ρhv, and differential phase ΦDP at high antenna elevation, and presenting resulting quasi-vertical profiles (QVPs) in a height-versus-time format. Multiple examples of QVPs retrieved from the data collected by S-, C-, and X-band dual-polarization radars at elevations ranging from 6.4° to 28° illustrate advantages of the QVP technique. The benefits include an ability to examine the temporal evolution of microphysical processes governing precipitation production and to compare polarimetric data obtained from the scanning surveillance weather radars with observations made by vertically looking remote sensors, such as wind profilers, lidars, radiometers, cloud radars, and radars operating on spaceborne and airborne platforms. Continuous monitoring of the melting layer and the layer of dendritic growth with high vertical resolution, and the possible opportunity to discriminate between the processes of snow aggregation and riming, constitute other potential benefits of the suggested methodology.


2016 ◽  
Vol 55 (8) ◽  
pp. 1771-1787 ◽  
Author(s):  
Robert S. Schrom ◽  
Matthew R. Kumjian

AbstractTo better connect radar observations to microphysical processes, the authors analyze concurrent polarimetric radar observations at vertical incidence and roughly side incidence during the Front Range Orographic Storms (FROST) project. Data from three events show signatures of riming, aggregation, and dendritic growth. Riming and the growth of graupel are suggested by negative differential reflectivity ZDR and vertically pointing Doppler velocity magnitude |VR| > 2.0 m s−1; aggregation is indicated by maxima in the downward-relative gradient of radar reflectivity at horizontal polarization ZH below the −15°C isotherm and positive downward-relative gradients in |VR| when averaged over time. A signature of positive downward-relative gradients in ZH, negative downward-relative gradients in |VR|, and maxima in ZDR is observed near −15°C during all three events. This signature may be indicative of dendritic growth; preexisting, thick platelike crystals fall faster and grow slower than dendrites, allowing for |VR| to shift toward the slower-falling, rapidly growing dendrites. To test this hypothesis, simplified calculations of the ZH and |VR| gradients are performed for a range of terminal fall speeds of dendrites and isometric crystals. The authors prescribe linear profiles of ZH for the dendrites and isometric crystals, with the resulting profiles and gradients of |VR| determined from a range of particle fall speeds. Both the observed ZH and |VR| gradients are reproduced by the calculations for a large range of fall speeds. However, more observational data are needed to fully constrain these calculations and reject or support explanations for this signature.


2020 ◽  
Vol 59 (4) ◽  
pp. 751-767 ◽  
Author(s):  
Erica M. Griffin ◽  
Terry J. Schuur ◽  
Alexander V. Ryzhkov

AbstractQuasi-vertical profiles (QVPs) obtained from a database of U.S. WSR-88D data are used to document polarimetric characteristics of the melting layer (ML) in cold-season storms with high vertical resolution and accuracy. A polarimetric technique to define the top and bottom of the ML is first introduced. Using the QVPs, statistical relationships are developed to gain insight into the evolution of microphysical processes above, within, and below the ML, leading to a statistical polarimetric model of the ML that reveals characteristics that reflectivity data alone are not able to provide, particularly in regions of weak reflectivity factor at horizontal polarization ZH. QVP ML statistics are examined for two regimes in the ML data: ZH ≥ 20 dBZ and ZH < 20 dBZ. Regions of ZH ≥ 20 dBZ indicate locations of MLs collocated with enhanced differential reflectivity ZDR and reduced copolar correlation coefficient ρhv, while for ZH < 20 dBZ a well-defined ML is difficult to discern using ZH alone. Evidence of large ZDR up to 4 dB, backscatter differential phase δ up to 8°, and low ρhv down to 0.80 associated with lower ZH (from −10 to 20 dBZ) in the ML is observed when pristine, nonaggregated ice falls through it. Positive correlation is documented between maximum specific differential phase KDP and maximum ZH in the ML; these are the first QVP observations of KDP in MLs documented at S band. Negative correlation occurs between minimum ρhv in the ML and ML depth and between minimum ρhv in the ML and the corresponding enhancement of ZH (ΔZH = ZHmax − ZHrain).


2010 ◽  
Vol 138 (3) ◽  
pp. 839-862 ◽  
Author(s):  
Anthony E. Morrison ◽  
Steven T. Siems ◽  
Michael J. Manton ◽  
Alex Nazarov

Abstract The cloud structure associated with two frontal passages over the Southern Ocean and Tasmania is investigated. The first event, during August 2006, is characterized by large quantities of supercooled liquid water and little ice. The second case, during October 2007, is more mixed phase. The Weather Research and Forecasting model (WRFV2.2.1) is evaluated using remote sensed and in situ observations within the post frontal air mass. The Thompson microphysics module is used to describe in-cloud processes, where ice is initiated using the Cooper parameterization at temperatures lower than −8°C or at ice supersaturations greater than 8%. The evaluated cases are then used to numerically investigate the prevalence of supercooled and mixed-phase clouds over Tasmania and the ocean to the west. The simulations produce marine stratocumulus-like clouds with maximum heights of between 3 and 5 km. These are capped by weak temperature and strong moisture inversions. When the inversion is at temperatures warmer than −10°C, WRF produces widespread supercooled cloud fields with little glaciation. This is consistent with the limited in situ observations. When the inversion is at higher altitudes, allowing cooler cloud tops, glaciated (and to a lesser extent mixed phase) clouds are more common. The simulations are further explored to evaluate any orographic signature within the cloud structure over Tasmania. No consistent signature is found between the two cases.


2015 ◽  
Vol 15 (12) ◽  
pp. 7085-7102 ◽  
Author(s):  
N. L. Wagner ◽  
C. A. Brock ◽  
W. M. Angevine ◽  
A. Beyersdorf ◽  
P. Campuzano-Jost ◽  
...  

Abstract. Vertical profiles of submicron aerosol from in situ aircraft-based measurements were used to construct aggregate profiles of chemical, microphysical, and optical properties. These vertical profiles were collected over the southeastern United States (SEUS) during the summer of 2013 as part of two separate field studies: the Southeast Nexus (SENEX) study and the Study of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS). Shallow cumulus convection was observed during many profiles. These conditions enhance vertical transport of trace gases and aerosol and create a cloudy transition layer on top of the sub-cloud mixed layer. The trace gas and aerosol concentrations in the transition layer were modeled as a mixture with contributions from the mixed layer below and the free troposphere above. The amount of vertical mixing, or entrainment of air from the free troposphere, was quantified using the observed mixing ratio of carbon monoxide (CO). Although the median aerosol mass, extinction, and volume decreased with altitude in the transition layer, they were ~10 % larger than expected from vertical mixing alone. This enhancement was likely due to secondary aerosol formation in the transition layer. Although the transition layer enhancements of the particulate sulfate and organic aerosol (OA) were both similar in magnitude, only the enhancement of sulfate was statistically significant. The column integrated extinction, or aerosol optical depth (AOD), was calculated for each individual profile, and the transition layer enhancement of extinction typically contributed less than 10 % to the total AOD. Our measurements and analysis were motivated by two recent studies that have hypothesized an enhanced layer of secondary aerosol aloft to explain the summertime enhancement of AOD (2–3 times greater than winter) over the southeastern United States. The first study attributes the layer aloft to secondary organic aerosol (SOA) while the second study speculates that the layer aloft could be SOA or secondary particulate sulfate. In contrast to these hypotheses, the modest enhancement we observed in the transition layer was not dominated by OA and was not a large fraction of the summertime AOD.


2017 ◽  
Vol 68 (4) ◽  
pp. 873-878
Author(s):  
Alexandru Dandocsi ◽  
Anca Nemuc ◽  
Cristina Marin ◽  
Simona Andrei

An intensive measurement campaign was performed during September 2014 in southern Romania in two different locations: Magurele, Ilfov County and Turceni, Gorj County. This paper presents one case study with analysis of the aerosol properties from in-situ, passive remote sensing and active remote sensing measurements. A Multiwavelength Raman Lidar (RALI) provided one hour averaged vertical profiles of extinction and backscatter from the 532 nm and 1064 nm channels in Magurele. The UV scanning Lidar (MILI) provided one hour averaged backscattered and extinction vertical profiles for Turceni. Planetary Boundary Layer Height (PBLH) was calculated using the altitude of the maximum negative gradient of the range corrected signal. Mass concentrations for different aerosol species (organics, nitrate, sulphate, ammonium and chloride) were obtained from in-situ measurements using Aerosol Mass Spectrometer located in M�gurele and Aerosol Chemical Speciation Monitor (ACSM) located in Turceni.


2021 ◽  
Author(s):  
Noel Baker ◽  
Michel Anciaux ◽  
Philippe Demoulin ◽  
Didier Fussen ◽  
Didier Pieroux ◽  
...  

&lt;p&gt;Led by the Belgian Institute for Space Aeronomy, the ESA-backed mission PICASSO (PICo-Satellite for Atmospheric and Space Science Observations) successfully launched its gold-plated satellite on an Arianespace Vega rocket in September 2020. PICASSO is a 3U CubeSat mission in collaboration with VTT Technical Research Center of Finland Ltd, AAC Clyde Space Ltd. (UK), and the CSL (Centre Spatial de Li&amp;#232;ge), Belgium. The commissioning of the two onboard scientific instruments is currently ongoing; once they are operational, PICASSO will be capable of providing scientific measurements of the Earth&amp;#8217;s atmosphere. VISION, proposed by BISA and developed by VTT, will retrieve vertical profiles of ozone and temperature by observing the Earth's atmospheric limb during orbital Sun occultation; and SLP, developed by BISA, will measure in situ plasma density and electron temperature together with the spacecraft potential.&lt;/p&gt;&lt;p&gt;Serving as a groundbreaking proof-of-concept, the PICASSO mission has taught valuable lessons about the advantages of CubeSat technology as well as its many complexities and challenges. These lessons learned, along with preliminary measurements from the two instruments, will be presented and discussed.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document