scholarly journals Assessing CYGNSS’s Potential to Observe Extratropical Fronts and Cyclones

2017 ◽  
Vol 56 (7) ◽  
pp. 2027-2034 ◽  
Author(s):  
Juan A. Crespo ◽  
Derek J. Posselt ◽  
Catherine M. Naud ◽  
Charles Bussy-Virat

AbstractThe Cyclone Global Navigation Satellite System (CYGNSS) mission, launched in December 2016, is designed to estimate surface wind speeds over the global tropical oceans. Nevertheless, its orbit allows the constellation to view regions up to 40° latitude. As such, it is possible that CYGNSS will provide observations of a number of low-latitude extratropical cyclones and their associated fronts. In this study, one year of simulated CYGNSS specular point locations is combined with a database of objectively identified fronts and cyclones to assess the potential efficacy of CYGNSS for observing extratropical systems. It is found that, with the exception of regions poleward of warm fronts, the subset of locations in the simulated CYGNSS dataset nearly exactly matches the distribution of wind speeds and surface fluxes across frontal zones and near cyclone centers in the reanalysis database.

2021 ◽  
Vol 60 (4) ◽  
pp. 527-541
Author(s):  
Juan A. Crespo ◽  
Catherine M. Naud ◽  
Derek J. Posselt

AbstractLatent and sensible heat fluxes over the oceans are believed to play an important role in the genesis and evolution of marine-based extratropical cyclones (ETCs) and affect rapid cyclogenesis. Observations of ocean surface heat fluxes are limited from existing in situ and remote sensing platforms, which may not offer sufficient spatial and temporal resolution. In addition, substantial precipitation frequently veils the ocean surface around ETCs, limiting the capacity of spaceborne instruments to observe the surface processes within maturing ETCs. Although designed as a tropics-focused mission, the Cyclone Global Navigation Satellite System (CYGNSS) can observe ocean surface wind speed and heat fluxes within a notable quantity of low-latitude extratropical fronts and cyclones. These observations can assist in understanding how surface processes may play a role in cyclogenesis and evolution. This paper illustrates CYGNSS’s capability to observe extratropical cyclones manifesting in various ocean basins throughout the globe and shows that the observations provide a robust sample of ETCs winds and surface fluxes, as compared with a reanalysis dataset.


Author(s):  
Shakeel Asharaf ◽  
Duane E. Waliser ◽  
Derek J. Posselt ◽  
Christopher S. Ruf ◽  
Chidong Zhang ◽  
...  

AbstractSurface wind plays a crucial role in many local/regional weather and climate processes, especially through the exchanges of energy, mass and momentum across the Earth’s surface. However, there is a lack of consistent observations with continuous coverage over the global tropical ocean. To fill this gap, the NASA Cyclone Global Navigation Satellite System (CYGNSS) mission was launched in December 2016, consisting of a constellation of eight small spacecrafts that remotely sense near surface wind speed over the tropical and sub-tropical oceans with relatively high sampling rates both temporally and spatially. This current study uses data obtained from the Tropical Moored Buoy Arrays to quantitatively characterize and validate the CYGNSS derived winds over the tropical Indian, Pacific, and Atlantic Oceans. The validation results show that the uncertainty in CYGNSS wind speed, as compared with these tropical buoy data, is less than 2 m s-1 root mean squared difference, meeting the NASA science mission Level-1 uncertainty requirement for wind speeds below 20 m s-1. The quality of the CYGNSS wind is further assessed under different precipitation conditions, and in convective cold-pool events, identified using buoy rain and temperature data. Results show that CYGNSS winds compare fairly well with buoy observations in the presence of rain, though at low wind speeds the presence of rain appears to cause a slight positive wind speed bias in the CYGNSS data. The comparison indicates the potential utility of the CYGNSS surface wind product, which in turn may help to unravel the complexities of air-sea interaction in regions that are relatively under-sampled by other observing platforms.


2020 ◽  
Vol 12 (23) ◽  
pp. 3968
Author(s):  
Timothy J. Lang

In order to examine how robust updraft strength and ice-based microphysical processes aloft in storms may affect convective outflows near the surface, ocean winds were compared between tropical maritime precipitation systems with and without lightning. The analysis focused on Cyclone Global Navigation Satellite System (CYGNSS) specular point tracks, using straightforward spatiotemporal matching criteria to pair CYGNSS-measured wind speeds with satellite-based precipitation observations, Advanced Scatterometer (ASCAT) wind speeds, and lightning flash data from ground-based and space-based sensors. Based on the results, thunderstorms over the tropical oceans are associated with significantly heavier rain rates (~200% greater) than non-thunderstorms. However, wind speeds near either type of precipitation system do not differ much (~0.5 m s−1 or less). Moreover, the sign of the difference depends on the wind instrument used, with CYGNSS suggesting non-thunderstorm winds are slightly stronger, while ASCAT suggests the opposite. These observed wind differences are likely related to lingering uncertainties between CYGNSS and ASCAT measurements in precipitation. However, both CYGNSS and ASCAT observe winds near precipitation (whether lightning-producing or not) to be stronger than background winds by at least 1 m s−1.


2018 ◽  
Vol 940 (10) ◽  
pp. 2-6
Author(s):  
J.A. Younes ◽  
M.G. Mustafin

The issue of calculating the plane rectangular coordinates using the data obtained by the satellite observations during the creation of the geodetic networks is discussed in the article. The peculiarity of these works is in conversion of the coordinates into the Mercator projection, while the plane coordinate system on the base of Gauss-Kruger projection is used in Russia. When using the technology of global navigation satellite system, this task is relevant for any point (area) of the Earth due to a fundamentally different approach in determining the coordinates. The fact is that satellite determinations are much more precise than the ground coordination methods (triangulation and others). In addition, the conversion to the zonal coordinate system is associated with errors; the value at present can prove to be completely critical. The expediency of using the Mercator projection in the topographic and geodetic works production at low latitudes is shown numerically on the basis of model calculations. To convert the coordinates from the geocentric system with the Mercator projection, a programming algorithm which is widely used in Russia was chosen. For its application under low-latitude conditions, the modification of known formulas to be used in Saudi Arabia is implemented.


2021 ◽  
Vol 13 (9) ◽  
pp. 1621
Author(s):  
Duojie Weng ◽  
Shengyue Ji ◽  
Yangwei Lu ◽  
Wu Chen ◽  
Zhihua Li

The differential global navigation satellite system (DGNSS) is an enhancement system that is widely used to improve the accuracy of single-frequency receivers. However, distance-dependent errors are not considered in conventional DGNSS, and DGNSS accuracy decreases when baseline length increases. In network real-time kinematic (RTK) positioning, distance-dependent errors are accurately modelled to enable ambiguity resolution on the user side, and standard Radio Technical Commission for Maritime Services (RTCM) formats have also been developed to describe the spatial characteristics of distance-dependent errors. However, the network RTK service was mainly developed for carrier-phase measurements on professional user receivers. The purpose of this study was to modify the local-area DGNSS through the use of network RTK corrections. Distance-dependent errors can be reduced, and accuracy for a longer baseline length can be improved. The results in the low-latitude areas showed that the accuracy of the modified DGNSS could be improved by more than 50% for a 17.9 km baseline during solar active years. The method in this paper extends the use of available network RTK corrections with high accuracy to normal local-area DGNSS applications.


2021 ◽  
Vol 13 (9) ◽  
pp. 1832
Author(s):  
Xiaohui Li ◽  
Dongkai Yang ◽  
Jingsong Yang ◽  
Guoqi Han ◽  
Gang Zheng ◽  
...  

The National Aeronautics and Space Administration (NASA) Cyclone Global Navigation Satellite System (CyGNSS) mission was launched in December 2016, which can remotely sense sea surface wind with a relatively high spatio-temporal resolution for tracking tropical cyclones. In recent years, with the gradual development of the geophysical model function (GMF) for CyGNSS wind retrieval, different versions of CyGNSS Level 2 products have been released and their performance has gradually improved. This paper presents a comprehensive evaluation of CyGNSS wind product v1.1 produced by the National Oceanic and Atmospheric Administration (NOAA). The Cross-Calibrated Multi-Platform (CCMP) analysis wind (v02.0 and v02.1 near real time) products produced by Remote Sensing Systems (RSS) were used as the reference. Data pairs between the NOAA CyGNSS and RSS CCMP products were processed and evaluated by the bias and standard deviation SD. The CyGNSS dataset covers the period between May 2017 and December 2020. The statistical comparisons show that the bias and SD of CyGNSS relative to CCMP-nonzero collocations when the flag of CCMP winds is nonzero are –0.05 m/s and 1.19 m/s, respectively. The probability density function (PDF) of the CyGNSS winds coincides with that of CCMP-nonzero. Furthermore, the average monthly bias and SD show that CyGNSS wind is consistent and reliable generally. We found that negative deviation mainly appears at high latitudes in both hemispheres. Positive deviation appears in the China Sea, the Arabian Sea, and the west of Africa and South America. Spatial–temporal analysis demonstrates the geographical anomalies in the bias and SD of the CyGNSS winds, confirming that the wind speed bias shows a temporal dependency. The verification and comparison show that the remotely sensed wind speed measurements from NOAA CyGNSS wind product v1.1 are in good agreement with CCMP winds.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 708 ◽  
Author(s):  
Liang Huang ◽  
Yi Liu ◽  
Qiong Tang ◽  
Guanyi Chen ◽  
Zhuangkai Wang ◽  
...  

By using multi-satellite observations of the L1 signal-to-noise ratio (SNR) from the Cyclone Global Navigation Satellite System (CYGNSS) taken in 2017, we present the occurrence of nighttime topside ionospheric irregularities in low-latitude and equatorial regions. The most significant finding of this study is the existence of longitudinal structures with a wavenumber 4 pattern in the topside irregularities. This suggests that lower atmospheric waves, especially a daytime diurnal eastward-propagating zonal wave number-3 nonmigrating tide (DE3), might play an important role in the generation of topside plasma bubbles during the low solar minimum. Observations of scintillation events indicate that the maximum occurrence of nighttime topside ionospheric irregularities occurs on the magnetic equator during the equinoxes. The current work, which could be regarded as an important update of the previous investigations, would be readily for the further global analysis of the topside ionospheric irregularities.


2015 ◽  
Vol 781 ◽  
pp. 102-105
Author(s):  
Sarawoot Rungraengwajiake ◽  
Pornchai Supnithi

The ground-based augmentation system (GBAS) is now an important system for assisting the global navigation satellite system (GNSS) based aircraft navigation during landing phases. Since the ionospheric irregularity is one of the most serious problem in the high-precision GBAS, the impacts of ionospheric irregularities to GBAS in many countries need to be studied before actual installation and operation. However, most of previous studies are based on the rare ionospheric storm events observed in US in the mid-latitude region. For Thailand, which is located in equatorial and low-latitude region, the ionospheric irregularity known as plasma bubble is a common phenomenon after sunset, considered to have adverse impact to the integrity of GBAS operation. In this paper, we propose a simple 3-D ionospheric plasma bubble model for studying its impacts on GBAS operation in Thailand. The background electron density generated by the NeQuick2 model combined with the rectangular depletion are used in the near real-time simulation.


2014 ◽  
Vol 32 (1) ◽  
pp. 7-17 ◽  
Author(s):  
P. Abadi ◽  
S. Saito ◽  
W. Srigutomo

Abstract. We investigated low-latitude ionospheric scintillation in Indonesia using two GPS receivers installed at Bandung (107.6° E, 6.9° S; magnetic latitude 17.5° S) and Pontianak (109.3° E, 0.02° S; magnetic latitude 8.9° S). This study aimed to characterise climatological and directional ionospheric scintillation occurrences, which are useful not only for the physics of ionospheric irregularities but also for practical use in GNSS (global navigation satellite system)-based navigation. We used the deployed instrument's amplitude scintillation (S4 index) data from 2009, 2010, and 2011; the yearly SSN (sunspot-smoothed numbers) were 3.1, 16.5, and 55.9, respectively. In summary, (1) scintillation occurrences in the post-sunset period (18:00–01:00 LT) during equinox months (plasma bubble season) at the two sites can be ascribed to the plasma bubble; (2) using directional analyses of the two sites, we found that the distribution of scintillation occurrences is generally concentrated between the two sites, indicating the average location of the EIA (equatorial ionisation anomaly) crest; (3) scintillation occurrence enhancements for the two sites in field-aligned directions are herein reported for the first time by ground-based observation in a low-latitude region; (4) distribution of scintillation occurrences at Pontianak are concentrated in the southern sky, especially in the southwest direction, which is very likely associated with the plasma bubble tilted westward with increasing latitude; and (5) scintillation occurrence in the post-midnight period in the non-plasma-bubble season is the most intriguing variable occurring between the two sites (i.e. post-midnight scintillations are observed more at Bandung than Pontianak). Most of the post-midnight scintillations observed at Bandung are concentrated in the northern sky, with low elevation angles. This might be due to the amplitude of irregularities in certain directions, which may be effectively enhanced by background density enhancement by the EIA and because satellite–receiver paths are longer in the EIA crest region and in a field-aligned direction.


2020 ◽  
Author(s):  
Vahid Freeman ◽  
Dallas Masters ◽  
Philp Jales ◽  
Stephan Esterhuizen ◽  
Ellie Ebrahimi ◽  
...  

<p>Spire Global operates the world’s largest and rapidly growing constellation of CubeSats performing GNSS based science and Earth observation. The Spire constellation, performs a variety of GNSS science, including radio occultation (GNSS-RO), ionosphere and space weather measurements, and precise orbit determination. In December 2019, Spire launched two new satellites to perform GNSS reflectometry (GNSS-R). GNSS-R is a relatively new technique based on a passive bistatic radar system. The potential of space-borne GNSS-R observations for ocean and land applications has been demonstrated by other GNSS-R missions, including the NASA Cyclone Global Navigation Satellite System (CYGNSS) and the UK’s Technology Demonstration Satellite, TechDemoSat (TDS-1). </p><p>We present initial results from these new Spire GNSS-R satellites that are primarily focused on retrieving soil moisture but also estimate other Earth surface properties such as ocean wind speeds and flood inundation/wetland mapping. Prior to the launch of Spire’s GNSS-R satellites and in preparation for Level-2 data production, we developed algorithms and processing chains for land applications. We will present Spire's Soil Moisture (SM) retrieval method using CYGNSS observations. We evaluated the implemented SM change detection algorithm by comparing the Spire’s daily SM product with NASA’s Soil Moisture Active Passive (SMAP) observations and in-situ SM measurements. The results of study indicate remarkable retrieval skills of the GNSS-R technique for soil moisture monitoring at a medium spatial resolution. Spire’s GNSS-R satellites are tuned for land applications with a series of hardware and software optimizations for better signal calibration and acquiring many more data per satellite compared to CYGNSS. A more robust GNSS-R SM retrieval at finer spatial resolution will be possible in the near future after having more Spire satellites in orbit.</p><p>Spire’s current and future GNSS-R satellites will provide unprecedented sub-daily global coverage with sub-kilometer spatial resolution. Such intensive data acquisition is of great importance for many land and ocean applications. </p>


Sign in / Sign up

Export Citation Format

Share Document