scholarly journals Examination of Nudging Schemes in the Simulation of Meteorology for Use in Air Quality Experiments: Application in the Great Lakes Region

2019 ◽  
Vol 58 (11) ◽  
pp. 2421-2436 ◽  
Author(s):  
M. Talat Odman ◽  
Andrew T. White ◽  
Kevin Doty ◽  
Richard T. McNider ◽  
Arastoo Pour-Biazar ◽  
...  

AbstractHigh levels of ozone have been observed along the shores of Lake Michigan for the last 40 years. Models continue to struggle in their ability to replicate ozone behavior in the region. In the retrospective way in which models are used in air quality regulation development, nudging or four-dimensional data assimilation (FDDA) of the large-scale environment is important for constraining model forecast errors. Here, paths for incorporating large-scale meteorological conditions but retaining model mesoscale structure are evaluated. For the July 2011 case studied here, iterative FDDA strategies did not improve mesoscale performance in the Great Lakes region in terms of diurnal trends or monthly averaged statistics, with overestimations of nighttime wind speed remaining as an issue. Two vertical nudging strategies were evaluated for their effects on the development of nocturnal low-level jets (LLJ) and their impacts on air quality simulations. Nudging only above the planetary boundary layer, which has been a standard option in many air quality simulations, significantly dampened the amplitude of LLJ relative to nudging only above a height of 2 km. While the LLJ was preserved with nudging only above 2 km, there was some deterioration in wind performance when compared with profiler networks above the jet between 500 m and 2 km. In examining the impact of nudging strategies on air quality performance of the Community Multiscale Air Quality model, it was found that performance was improved for the case of nudging above 2 km. This result may reflect the importance of the LLJ in transport or perhaps a change in mixing in the models.

2013 ◽  
Vol 13 (20) ◽  
pp. 10461-10482 ◽  
Author(s):  
J. R. Brook ◽  
P. A. Makar ◽  
D. M. L. Sills ◽  
K. L. Hayden ◽  
R. McLaren

Abstract. This paper serves as an overview and discusses the main findings from the Border Air Quality and Meteorology Study (BAQS-Met) in southwestern Ontario in 2007. This region is dominated by the Great Lakes, shares borders with the United States and consistently experiences the highest ozone (O3) and fine particulate matter concentrations in Canada. The purpose of BAQS-Met was to improve our understanding of how lake-driven meteorology impacts air quality in the region, and to improve models used for forecasting and policy scenarios. Results show that lake breeze occurrence frequencies and inland penetration distances were significantly greater than realized in the past. Due to their effect on local meteorology, the lakes were found to enhance secondary O3 and aerosol formation such that local anthropogenic emissions have their impact closer to the populated source areas than would otherwise occur in the absence of the lakes. Substantial spatial heterogeneity in O3 was observed with local peaks typically 30 ppb above the regional values. Sulfate and secondary organic aerosol (SOA) enhancements were also linked to local emissions being transported in the lake breeze circulations. This study included the first detailed evaluation of regional applications of a high-resolution (2.5 km grid) air quality model in the Great Lakes region. The model showed that maxima in secondary pollutants occur in areas of convergence, in localized updrafts and in distinct pockets over the lake surfaces. These effects are caused by lake circulations interacting with the synoptic flow, with each other or with circulations induced by urban heat islands. Biogenic and anthropogenic emissions were both shown to play a role in the formation of SOA in the region. Detailed particle measurements and multivariate receptor models reveal that while individual particles are internally mixed, they often exist within more complex external mixtures. This makes it difficult to predict aerosol optical properties and further highlights the challenges facing aerosol modelling. The BAQS-Met study has led to a better understanding of the value of high-resolution (2.5 km) modelling for air quality and meteorological predictions and has led to several model improvements.


Időjárás ◽  
2021 ◽  
Vol 125 (4) ◽  
pp. 625-646
Author(s):  
Zita Ferenczi ◽  
Emese Homolya ◽  
Krisztina Lázár ◽  
Anita Tóth

An operational air quality forecasting model system has been developed and provides daily forecasts of ozone, nitrogen oxides, and particulate matter for the area of Hungary and three big cites of the country (Budapest, Miskolc, and Pécs). The core of the model system is the CHIMERE off-line chemical transport model. The AROME numerical weather prediction model provides the gridded meteorological inputs for the chemical model calculations. The horizontal resolution of the AROME meteorological fields is consistent with the CHIMERE horizontal resolution. The individual forecasted concentrations for the following 2 days are displayed on a public website of the Hungarian Meteorological Service. It is essential to have a quantitative understanding of the uncertainty in model output arising from uncertainties in the input meteorological fields. The main aim of this research is to probe the response of an air quality model to its uncertain meteorological inputs. Ensembles are one method to explore how uncertainty in meteorology affects air pollution concentrations. During the past decades, meteorological ensemble modeling has received extensive research and operational interest because of its ability to better characterize forecast uncertainty. One such ensemble forecast system is the one of the AROME model, which has an 11-member ensemble where each member is perturbed by initial and lateral boundary conditions. In this work we focus on wintertime particulate matter concentrations, since this pollutant is extremely sensitive to near-surface mixing processes. Selecting a number of extreme air pollution situations we will show what the impact of the meteorological uncertainty is on the simulated concentration fields using AROME ensemble members.


2008 ◽  
Vol 47 (7) ◽  
pp. 1853-1867 ◽  
Author(s):  
Tanya L. Otte

Abstract It is common practice to use Newtonian relaxation, or nudging, throughout meteorological model simulations to create “dynamic analyses” that provide the characterization of the meteorological conditions for retrospective air quality model simulations. Given the impact that meteorological conditions have on air quality simulations, it has been assumed that the resultant air quality simulations would be more skillful by using dynamic analyses rather than meteorological forecasts to characterize the meteorological conditions, and that the statistical trends in the meteorological model fields are also reflected in the air quality model. This article, which is the first of two parts, demonstrates the impact of nudging in the meteorological model on retrospective air quality model simulations. Here, meteorological simulations are generated by the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) using both the traditional dynamic analysis approach and using forecasts for a summertime period. The resultant fields are then used to characterize the meteorological conditions for emissions processing and air quality simulations using the Community Multiscale Air Quality (CMAQ) Modeling System. As expected, on average, the near-surface meteorological fields show a significant degradation over time in the forecasts (when nudging is not used), while the dynamic analyses maintain nearly constant statistical scores in time. The use of nudged MM5 fields in CMAQ generally results in better skill scores for daily maximum 1-h ozone mixing ratio simulations. On average, the skill of the daily maximum 1-h ozone simulation deteriorates significantly over time when nonnudged MM5 fields are used in CMAQ. The daily maximum 1-h ozone mixing ratio also degrades over time in the CMAQ simulation that uses MM5 dynamic analyses, although to a much lesser degree, despite no aggregate loss of skill over time in the dynamic analyses themselves. These results affirm the advantage of using nudging in MM5 to create the meteorological characterization for CMAQ for retrospective simulations, and it is shown that MM5-based dynamic analyses are robust at the surface throughout 5.5-day simulations.


2021 ◽  
Author(s):  
Jacinta Edebeli ◽  
Curdin Spirig ◽  
Julien Anet

<p>The fifth version of the Emission Database for Global Atmospheric Research (EDGAR 5.0) provides an impressive inventory of various pollutants. Pollutants from different emission sectors are available with daily, monthly and yearly temporal profiles at a high global resolution of 0.1°×0.1°. Although this resolution has been sufficient for regional air quality studies, the emissions appeared to be too coarse for local air quality studies in areas with complex topography. With Switzerland as a case study, we present our approach for downscaling EDGAR emission data to a much finer resolution of 0.02°×0.02° with the aim of modelling local air quality.</p><p>We downscaled the EDGAR emissions using a combination of GIS tools including QGIS, ArcGIS, and a series of python scripts. We obtained the surface coverage of different land use features within the defined EDGAR emission sectors from Open Street Map (OSM) using the <em>QuickOSM</em> tool in QGIS. With the calculated local surface area coverage of the emissions sectors, we downscaled the EDGAR inventory data within ArcGIS using a set of developed Arcpy script tools.</p><p>The outcome was a much finer resolved emission dataset which we fed into the WRF-CHEM air quality model within a pilot project. A comparison of the modelled pollutant concentrations using the two datasets (original EDGAR data and the downscaled data) shows an improved agreement between the downscaled dataset and the measurement data.</p><p>Studies investigating the impact of urbanization, land use change or traffic pattern on air quality may benefit from our downscaling solution, which, thanks to the global coverage of OSM, can be globally applied.</p>


2022 ◽  
pp. 118946
Author(s):  
H. Hooyberghs ◽  
S. De Craemer ◽  
W. Lefebvre ◽  
S. Vranckx ◽  
B. Maiheu ◽  
...  

2018 ◽  
Vol 18 (13) ◽  
pp. 9741-9765 ◽  
Author(s):  
Emmanouil Oikonomakis ◽  
Sebnem Aksoyoglu ◽  
Martin Wild ◽  
Giancarlo Ciarelli ◽  
Urs Baltensperger ◽  
...  

Abstract. Surface solar radiation (SSR) observations have indicated an increasing trend in Europe since the mid-1980s, referred to as solar “brightening”. In this study, we used the regional air quality model, CAMx (Comprehensive Air Quality Model with Extensions) to simulate and quantify, with various sensitivity runs (where the year 2010 served as the base case), the effects of increased radiation between 1990 and 2010 on photolysis rates (with the PHOT1, PHOT2 and PHOT3 scenarios, which represented the radiation in 1990) and biogenic volatile organic compound (BVOC) emissions (with the BIO scenario, which represented the biogenic emissions in 1990), and their consequent impacts on summer surface ozone concentrations over Europe between 1990 and 2010. The PHOT1 and PHOT2 scenarios examined the effect of doubling and tripling the anthropogenic PM2.5 concentrations, respectively, while the PHOT3 investigated the impact of an increase in just the sulfate concentrations by a factor of 3.4 (as in 1990), applied only to the calculation of photolysis rates. In the BIO scenario, we reduced the 2010 SSR by 3 % (keeping plant cover and temperature the same), recalculated the biogenic emissions and repeated the base case simulations with the new biogenic emissions. The impact on photolysis rates for all three scenarios was an increase (in 2010 compared to 1990) of 3–6 % which resulted in daytime (10:00–18:00 Local Mean Time – LMT) mean surface ozone differences of 0.2–0.7 ppb (0.5–1.5 %), with the largest hourly difference rising as high as 4–8 ppb (10–16 %). The effect of changes in BVOC emissions on daytime mean surface ozone was much smaller (up to 0.08 ppb, ∼ 0.2 %), as isoprene and terpene (monoterpene and sesquiterpene) emissions increased only by 2.5–3 and 0.7 %, respectively. Overall, the impact of the SSR changes on surface ozone was greater via the effects on photolysis rates compared to the effects on BVOC emissions, and the sensitivity test of their combined impact (the combination of PHOT3 and BIO is denoted as the COMBO scenario) showed nearly additive effects. In addition, all the sensitivity runs were repeated on a second base case with increased NOx emissions to account for any potential underestimation of modeled ozone production; the results did not change significantly in magnitude, but the spatial coverage of the effects was profoundly extended. Finally, the role of the aerosol–radiation interaction (ARI) changes in the European summer surface ozone trends was suggested to be more important when comparing to the order of magnitude of the ozone trends instead of the total ozone concentrations, indicating a potential partial damping of the effects of ozone precursor emissions' reduction.


2018 ◽  
Vol 18 (3) ◽  
pp. 2175-2198 ◽  
Author(s):  
Emmanouil Oikonomakis ◽  
Sebnem Aksoyoglu ◽  
Giancarlo Ciarelli ◽  
Urs Baltensperger ◽  
André Stephan Henry Prévôt

Abstract. High surface ozone concentrations, which usually occur when photochemical ozone production takes place, pose a great risk to human health and vegetation. Air quality models are often used by policy makers as tools for the development of ozone mitigation strategies. However, the modeled ozone production is often not or not enough evaluated in many ozone modeling studies. The focus of this work is to evaluate the modeled ozone production in Europe indirectly, with the use of the ozone–temperature correlation for the summer of 2010 and to analyze its sensitivity to precursor emissions and meteorology by using the regional air quality model, the Comprehensive Air Quality Model with Extensions (CAMx). The results show that the model significantly underestimates the observed high afternoon surface ozone mixing ratios (≥ 60 ppb) by 10–20 ppb and overestimates the lower ones (< 40 ppb) by 5–15 ppb, resulting in a misleading good agreement with the observations for average ozone. The model also underestimates the ozone–temperature regression slope by about a factor of 2 for most of the measurement stations. To investigate the impact of emissions, four scenarios were tested: (i) increased volatile organic compound (VOC) emissions by a factor of 1.5 and 2 for the anthropogenic and biogenic VOC emissions, respectively, (ii) increased nitrogen oxide (NOx) emissions by a factor of 2, (iii) a combination of the first two scenarios and (iv) increased traffic-only NOx emissions by a factor of 4. For southern, eastern, and central (except the Benelux area) Europe, doubling NOx emissions seems to be the most efficient scenario to reduce the underestimation of the observed high ozone mixing ratios without significant degradation of the model performance for the lower ozone mixing ratios. The model performance for ozone–temperature correlation is also better when NOx emissions are doubled. In the Benelux area, however, the third scenario (where both NOx and VOC emissions are increased) leads to a better model performance. Although increasing only the traffic NOx emissions by a factor of 4 gave very similar results to the doubling of all NOx emissions, the first scenario is more consistent with the uncertainties reported by other studies than the latter, suggesting that high uncertainties in NOx emissions might originate mainly from the road-transport sector rather than from other sectors. The impact of meteorology was examined with three sensitivity tests: (i) increased surface temperature by 4 ∘C, (ii) reduced wind speed by 50 % and (iii) doubled wind speed. The first two scenarios led to a consistent increase in all surface ozone mixing ratios, thus improving the model performance for the high ozone values but significantly degrading it for the low ozone values, while the third scenario had exactly the opposite effects. Overall, the modeled ozone is predicted to be more sensitive to its precursor emissions (especially traffic NOx) and therefore their uncertainties, which seem to be responsible for the model underestimation of the observed high ozone mixing ratios and ozone production.


Sign in / Sign up

Export Citation Format

Share Document