Regional Assimilation System for Transformed Retrievals from Satellite High-Resolution Infrared Data

2020 ◽  
Vol 59 (7) ◽  
pp. 1171-1193
Author(s):  
Paolo Antonelli ◽  
Tiziana Cherubini ◽  
Steven Businger ◽  
Siebren de Haan ◽  
Paolo Scaccia ◽  
...  

AbstractSatellite retrievals strive to exploit the information contained in thousands of channels provided by hyperspectral sensors and show promise in providing a gain in computational efficiency over current radiance assimilation methods by transferring computationally expensive radiative transfer calculations to retrieval providers. This paper describes the implementation of a new approach based on the transformation proposed in 2008 by Migliorini et al., which reduces the impact of the a priori information in the retrievals and generates transformed retrievals (TRs) whose assimilation does not require knowledge of the hyperspectral instruments characteristics. Significantly, the results confirm both the viability of Migliorini’s approach and the possibility of assimilating data from different hyperspectral satellite sensors regardless of the instrument characteristics. The Weather Research and Forecasting (WRF) Model’s Data Assimilation (WRFDA) 3-h cycling system was tested over the central North Pacific Ocean, and the results show that the assimilation of TRs has a greater impact in the characterization of the water vapor distribution than on the temperature field. These results are consistent with the knowledge that temperature field is well constrained by the initial and boundary conditions of the Global Forecast System (GFS), whereas the water vapor distribution is less well constrained in the GFS. While some preliminary results on the comparison between the assimilation with and without TRs in the forecasting system are presented in this paper, additional work remains to explore the impact of the new assimilation approach on forecasts and will be provided in a follow-up publication.

2017 ◽  
Vol 17 (11) ◽  
pp. 6663-6678 ◽  
Author(s):  
Shreeya Verma ◽  
Julia Marshall ◽  
Mark Parrington ◽  
Anna Agustí-Panareda ◽  
Sebastien Massart ◽  
...  

Abstract. Airborne observations of greenhouse gases are a very useful reference for validation of satellite-based column-averaged dry air mole fraction data. However, since the aircraft data are available only up to about 9–13 km altitude, these profiles do not fully represent the depth of the atmosphere observed by satellites and therefore need to be extended synthetically into the stratosphere. In the near future, observations of CO2 and CH4 made from passenger aircraft are expected to be available through the In-Service Aircraft for a Global Observing System (IAGOS) project. In this study, we analyse three different data sources that are available for the stratospheric extension of aircraft profiles by comparing the error introduced by each of them into the total column and provide recommendations regarding the best approach. First, we analyse CH4 fields from two different models of atmospheric composition – the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System for Composition (C-IFS) and the TOMCAT/SLIMCAT 3-D chemical transport model. Secondly, we consider scenarios that simulate the effect of using CH4 climatologies such as those based on balloons or satellite limb soundings. Thirdly, we assess the impact of using a priori profiles used in the satellite retrievals for the stratospheric part of the total column. We find that the models considered in this study have a better estimation of the stratospheric CH4 as compared to the climatology-based data and the satellite a priori profiles. Both the C-IFS and TOMCAT models have a bias of about −9 ppb at the locations where tropospheric vertical profiles will be measured by IAGOS. The C-IFS model, however, has a lower random error (6.5 ppb) than TOMCAT (12.8 ppb). These values are well within the minimum desired accuracy and precision of satellite total column XCH4 retrievals (10 and 34 ppb, respectively). In comparison, the a priori profile from the University of Leicester Greenhouse Gases Observing Satellite (GOSAT) Proxy XCH4 retrieval and climatology-based data introduce larger random errors in the total column, being limited in spatial coverage and temporal variability. Furthermore, we find that the bias in the models varies with latitude and season. Therefore, applying appropriate bias correction to the model fields before using them for profile extension is expected to further decrease the error contributed by the stratospheric part of the profile to the total column.


2016 ◽  
Vol 9 (10) ◽  
pp. 5249-5263 ◽  
Author(s):  
Biyan Chen ◽  
Zhizhao Liu

Abstract. Acquiring accurate atmospheric water vapor spatial information remains one of the most challenging tasks in meteorology. The tomographic technique is a powerful tool for modeling atmospheric water vapor and monitoring the water vapor spatial and temporal distribution/variation information. This paper presents a study on the monitoring of water vapor variations using tomographic techniques based on multi-source water vapor data, including GPS (Global Positioning System), radiosonde, WVR (water vapor radiometer), NWP (numerical weather prediction), AERONET (AErosol RObotic NETwork) sun photometer and synoptic station measurements. An extensive investigation has been carried out using multi-source data collected from May to October 2013 in Hong Kong. With the use of radiosonde observed profiles, five different vertical a priori information schemes were designed and examined. Analysis results revealed that the best vertical constraint is to employ the average radiosonde profiles over the 3 days prior to the tomographic time and that the assimilation of multi-source data can increase the tomography modeling accuracy. Based on the best vertical a priori information scheme, comparisons of slant wet delay (SWD) measurements between GPS data and multi-observational tomography showed that the root mean square error (RMSE) of their differences is 10.85 mm. Multi-observational tomography achieved an accuracy of 7.13 mm km−1 when compared with radiosonde wet refractivity observations. The vertical layer tomographic modeling accuracy was also assessed using radiosonde water vapor profiles. An accuracy of 11.44 mm km−1 at the lowest layer (0–0.4 km) and an RMSE of 3.30 mm km−1 at the uppermost layer (7.5–8.5 km) were yielded. At last, a test of the tomographic modeling in a torrential storm occurring on 21–22 May 2013 in Hong Kong demonstrated that the tomographic modeling is very robust, even during severe precipitation conditions.


2019 ◽  
Vol 12 (2) ◽  
pp. 873-890
Author(s):  
Ivan Ortega ◽  
Rebecca R. Buchholz ◽  
Emrys G. Hall ◽  
Dale F. Hurst ◽  
Allen F. Jordan ◽  
...  

Abstract. Retrievals of vertical profiles of key atmospheric gases provide a critical long-term record from ground-based Fourier transform infrared (FTIR) solar absorption measurements. However, the characterization of the retrieved vertical profile structure can be difficult to validate, especially for gases with large vertical gradients and spatial–temporal variability such as water vapor. In this work, we evaluate the accuracy of the most common water vapor isotope (H216O, hereafter WV) FTIR retrievals in the lower and upper troposphere–lower stratosphere. Coincident high-quality vertically resolved WV profile measurements obtained from 2010 to 2016 with balloon-borne NOAA frost point hygrometers (FPHs) are used as reference to evaluate the performance of the retrieved profiles at two sites: Boulder (BLD), Colorado, and at the mountaintop observatory of Mauna Loa (MLO), Hawaii. For a meaningful comparison, the spatial–temporal variability has been investigated. We present results of comparisons among FTIR retrievals with unsmoothed and smoothed FPH profiles to assess WV vertical gradients. Additionally, we evaluate the quantitative impact of different a priori profiles in the retrieval of WV. An orthogonal linear regression analysis shows the best correlation among tropospheric layers using ERA-Interim (ERA-I) a priori profiles and biases are lower for unsmoothed comparisons. In Boulder, we found a negative bias of 0.02±1.9 % (r=0.95) for the 1.5–3 km layer. A larger negative bias of 11.1±3.5 % (r=0.97) was found in the lower free troposphere layer of 3–5 km attributed to rapid vertical change of WV, which is not always captured by the retrievals. The bias improves in the 5–7.5 km layer (1.0±5.3 %, r=0.94). The bias remains at about 13 % for layers above 7.5 km but below 13.5 km. At MLO the spatial mismatch is significantly larger due to the launch of the sonde being farther from the FTIR location. Nevertheless, we estimate a negative bias of 5.9±4.6 % (r=0.93) for the 3.5–5.5 km layer and 9.9±3.7 % (r=0.93) for the 5.5–7.5 km layer, and we measure positive biases of 6.2±3.6 % (r=0.95) for the 7.5–10 km layer and 12.6 % and greater values above 10 km. The agreement for the first layer is significantly better at BLD because the air masses are similar for both FTIR and FPH. Furthermore, for the first time we study the influence of different WV a priori profiles in the retrieval of selected gas profiles. Using NDACC standard retrievals we present results for hydrogen cyanide (HCN), carbon monoxide (CO), and ethane (C2H6) by taking NOAA FPH profiles as the ground truth and evaluating the impact of other WV profiles. We show that the effect is minor for C2H6 (bias <0.5 % for all WV sources) among all vertical layers. However, for HCN we found significant biases between 6 % for layers close to the surface and 2 % for the upper troposphere depending on the WV profile source. The best results (reduced bias and precision and r values closer to unity) are always found for pre-retrieved WV. Therefore, we recommend first retrieving WV to use in subsequent retrieval of gases.


2019 ◽  
Vol 12 (7) ◽  
pp. 3943-3961 ◽  
Author(s):  
Ali Jalali ◽  
Shannon Hicks-Jalali ◽  
Robert J. Sica ◽  
Alexander Haefele ◽  
Thomas von Clarmann

Abstract. Lidar retrievals of atmospheric temperature and water vapor mixing ratio profiles using the optimal estimation method (OEM) typically use a retrieval grid with a number of points larger than the number of pieces of independent information obtainable from the measurements. Consequently, retrieved geophysical quantities contain some information from their respective a priori values or profiles, which can affect the results in the higher altitudes of the temperature and water vapor profiles due to decreasing signal-to-noise ratios. The extent of this influence can be estimated using the retrieval's averaging kernels. The removal of formal a priori information from the retrieved profiles in the regions of prevailing a priori effects is desirable, particularly when these greatest heights are of interest for scientific studies. We demonstrate here that removal of a priori information from OEM retrievals is possible by repeating the retrieval on a coarser grid where the retrieval is stable even without the use of formal prior information. The averaging kernels of the fine-grid OEM retrieval are used to optimize the coarse retrieval grid. We demonstrate the adequacy of this method for the case of a large power-aperture Rayleigh scatter lidar nighttime temperature retrieval and for a Raman scatter lidar water vapor mixing ratio retrieval during both day and night.


2016 ◽  
Vol 9 (3) ◽  
pp. 909-928 ◽  
Author(s):  
Daniel Fisher ◽  
Caroline A. Poulsen ◽  
Gareth E. Thomas ◽  
Jan-Peter Muller

Abstract. In this paper we evaluate the impact on the cloud parameter retrievals of the ORAC (Optimal Retrieval of Aerosol and Cloud) algorithm following the inclusion of stereo-derived cloud top heights as a priori information. This is performed in a mathematically rigorous way using the ORAC optimal estimation retrieval framework, which includes the facility to use such independent a priori information. Key to the use of a priori information is a characterisation of their associated uncertainty. This paper demonstrates the improvements that are possible using this approach and also considers their impact on the microphysical cloud parameters retrieved. The Along-Track Scanning Radiometer (AATSR) instrument has two views and three thermal channels, so it is well placed to demonstrate the synergy of the two techniques. The stereo retrieval is able to improve the accuracy of the retrieved cloud top height when compared to collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), particularly in the presence of boundary layer inversions and high clouds. The impact of the stereo a priori information on the microphysical cloud properties of cloud optical thickness (COT) and effective radius (RE) was evaluated and generally found to be very small for single-layer clouds conditions over open water (mean RE differences of 2.2 (±5.9) microns and mean COD differences of 0.5 (±1.8) for single-layer ice clouds over open water at elevations of above 9 km, which are most strongly affected by the inclusion of the a priori).


2005 ◽  
Vol 5 (6) ◽  
pp. 1665-1677 ◽  
Author(s):  
A. von Engeln ◽  
G. Nedoluha

Abstract. The Optimal Estimation Method is used to retrieve temperature and water vapor profiles from simulated radio occultation measurements in order to assess how different retrieval schemes may affect the assimilation of this data. High resolution ECMWF global fields are used by a state-of-the-art radio occultation simulator to provide quasi-realistic bending angle and refractivity profiles. Both types of profiles are used in the retrieval process to assess their advantages and disadvantages. The impact of the GPS measurement is expressed as an improvement over the a priori knowledge (taken from a 24h old analysis). Large improvements are found for temperature in the upper troposphere and lower stratosphere. Only very small improvements are found in the lower troposphere, where water vapor is present. Water vapor improvements are only significant between about 1 km to 7 km. No pronounced difference is found between retrievals based upon bending angles or refractivity. Results are compared to idealized retrievals, where the atmosphere is spherically symmetric and instrument noise is not included. Comparing idealized to quasi-realistic calculations shows that the main impact of a ray tracing algorithm can be expected for low latitude water vapor, where the horizontal variability is high. We also address the effect of altitude correlations in the temperature and water vapor. Overall, we find that water vapor and temperature retrievals using bending angle profiles are more CPU intensive than refractivity profiles, but that they do not provide significantly better results.


2015 ◽  
Vol 8 (5) ◽  
pp. 5283-5327
Author(s):  
D. Fisher ◽  
C. A. Poulsen ◽  
G. E. Thomas ◽  
J.-P. Muller

Abstract. In this paper we evaluate the retrievals of cloud top height when stereo derived heights are combined with the radiometric cloud top heights retrieved from the ORAC (Optimal Retrieval of Aerosol and Cloud) algorithm. This is performed in a mathematically rigorous way using the ORAC optimal estimation retrieval framework, which includes the facility to use independent a priori information. Key to the use of a priori information is a characterisation of their associated uncertainty. This paper demonstrates the improvements that are possible using this approach and also considers their impact on the microphysical cloud parameters retrieved. The AATSR instrument has two views and three thermal channels so is well placed to demonstrate the synergy of the two techniques. The stereo retrieval is able to improve the accuracy of the retrieved cloud top height when compared to collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), particularly in the presence of boundary layer inversions and high clouds. The impact on the microphysical properties of the cloud such as optical depth and effective radius was evaluated and found to be very small with the biggest differences occurring over bright land surfaces and for high clouds. Overall the cost of the retrievals increased indicating a poorer radiative fit of radiances to the cloud model, which currently uses a single layer cloud model. Best results and improved fit to the radiances may be obtained in the future if a multi-layer model is used.


2013 ◽  
Vol 6 (2) ◽  
pp. 2353-2411 ◽  
Author(s):  
T. Holzer-Popp ◽  
G. de Leeuw ◽  
D. Martynenko ◽  
L. Klüser ◽  
S. Bevan ◽  
...  

Abstract. Within the ESA Climate Change Initiative (CCI) project Aerosol_cci (2010–2013) algorithms for the production of long-term total column aerosol optical depth (AOD) datasets from European Earth Observation sensors are developed. Starting with eight existing pre-cursor algorithms three analysis steps are conducted to improve and qualify the algorithms: (1) a series of experiments applied to one month of global data to understand several major sensitivities to assumptions needed due to the ill-posed nature of the underlying inversion problem, (2) a round robin exercise of "best" versions of each of these algorithms (defined using the step 1 outcome) applied to four months of global data to identify mature algorithms, and (3) a comprehensive validation exercise applied to one complete year of global data produced by the algorithms selected as mature based on the round robin exercise. The algorithms tested included four using AATSR, three using MERIS and one using PARASOL. This paper summarizes the first step. Three experiments were conducted to assess the potential impact of major assumptions in the various aerosol retrieval algorithms. In the first experiment a common set of four aerosol components was used to provide all algorithms with the same assumptions. The second experiment introduced an aerosol property climatology, derived from a combination of model and sun photometer observations, as a priori information in the retrievals on the occurrence of the common aerosol components and their mixing ratios. The third experiment assessed the impact of using a common nadir cloud mask for AATSR and MERIS algorithms in order to characterize the sensitivity to remaining cloud contamination in the retrievals against the baseline dataset versions. The impact of the algorithm changes was assessed for one month (September 2008) of data qualitatively by visible analysis of monthly mean AOD maps and quantitatively by comparing global daily gridded satellite data against daily average AERONET sun photometer observations for the different versions of each algorithm. The analysis allowed an assessment of sensitivities of all algorithms which helped define the best algorithm version for the subsequent round robin exercise; all algorithms (except for MERIS) showed some, in parts significant, improvement. In particular, using common aerosol components and partly also a priori aerosol type climatology is beneficial. On the other hand the use of an AATSR-based common cloud mask meant a clear improvement (though with significant reduction of coverage) for the MERIS standard product, but not for the algorithms using AATSR.


Sign in / Sign up

Export Citation Format

Share Document