scholarly journals Moist Recirculation and Water Vapor Transport on Dry Isentropes*

2012 ◽  
Vol 69 (3) ◽  
pp. 875-890 ◽  
Author(s):  
Frédéric Laliberté ◽  
Tiffany Shaw ◽  
Olivier Pauluis

Abstract An analysis of the overturning circulation in dry isentropic coordinates using reanalysis data is presented. The meridional mass fluxes on surfaces of constant dry potential temperature but distinct equivalent potential temperature are separated into southward and northward contributions. The separation identifies thermodynamically distinct mass fluxes moving in opposite directions. The eddy meridional water vapor transport is shown to be associated with large poleward and equatorward mass fluxes occurring at the same value of dry potential temperature but different equivalent potential temperature. These mass fluxes, referred to here as the moist recirculation, are associated with an export of water vapor from the subtropics connecting the Hadley cell to the midlatitude storm tracks. The poleward branch of the moist recirculation occurs at mean equivalent potential temperatures comparable to upper tropospheric dry potential temperature values, indicating that typical poleward-moving air parcels can ascend to the tropopause. The analysis suggests that these air parcels ascend on the equatorward side of storm tracks by following moist isentropes reminiscent of upright deep convection, while on the poleward side their moist isentropes are indicative of large-scale slantwise convection. In the equatorward branch, the analysis describes typical air parcels that follow their dry isentropes until they get injected into the boundary layer where they are subsequently moistened. The moist recirculation along with the mean equivalent potential temperature of its poleward and equatorward components are used to recover an approximate overturning circulation on moist isentropes from which it is shown that the moist recirculation accounts for the difference between the meridional circulation averaged on dry and on moist isentropes.

2021 ◽  
pp. 1-54

Abstract It has been suggested that summer rainfall over Central Asia (CA) is significantly correlated with the summer thermal distribution of the Tibetan Plateau (TP) and the Indian summer monsoon (ISM). However, relatively few studies have investigated their synergistic effects of different distribution. This study documents the significant correlations between precipitation in CA and the diabatic heating of TP and the ISM based on the results of statistical analysis and numerical simulation. Precipitation in CA is is dominated by two water vapor transport branches from the south which are related to the two primary modes of anomalous diabatic heating distribution related to the TP and ISM precipitation, that is, the “+-” dipole mode in the southeastern TP and the Indian subcontinent (IS), and the “+-+” tripole mode in the southeastern TP, the IS, and southern India. Both modes exhibit obvious mid-latitude Silk Road pattern (SRP) wave trains with cyclone anomalies over CA, but with different transient and stationary eddies over south Asia. The different locations of anomalous anticyclones over India govern two water vapor transport branches to CA, which are from the Arabian Sea and the Bay of Bengal. The water vapor flux climbs while being transported northward and can be transported to CA with the cooperation of cyclonic circulation. The convergent water vapor and ascending motion caused by cyclonic anomalies favor the precipitation in CA. Further analysis corroborates the negative South Indian Ocean Dipole (NSIOD) in February could affect the tripole mode distribution of TP heating and ISM via the atmospheric circulation, water vapor transport and an anomalous Hadley cell circulation. The results indicate a reliable prediction reference for precipitation in CA.


2009 ◽  
Vol 22 ◽  
pp. 73-78 ◽  
Author(s):  
J. M. Arraut ◽  
H. M. J. Barbosa

Abstract. South American subtropics east of the Andes exhibit a region of intense climatological frontogenesis in equivalent potential temperature (EPT) in the December to March season, mostly produced by deformation of the wind field. The goal of this paper is to investigate the large scale features associated with intense and weak frontogenesis by deformation (FGD) in EPT in the region where it attains its climatological maximum. This can be approximately delimited by 32–42° S and 66–69° W, which is small enough as to contain only one synoptic perturbation at a time. The spatial average of the positive values of frontogenesis at 850 hPa over the whole region (DFG+) is used to represent the strength of the perturbation. ECMWF ERA-40 reanalysis data set is used to calculate DFG+ at six hour intervals for 21 seasons (1981–2002). Compositing analysis is carried out for strong (above the 0.75 quantile) and weak (below the 0.25 quantile) events. For strong events the geopotential field at 850 hPa exhibits the North Argentinean Low (NAL), a transient trough and the Low Pressure Tongue East of the Andes (LPT). Upon comparison with the composite field of FGD it can be observed that FGD exhibits a strong maximum over the Argentinean Col (AC) which separates the NAL and the trough. These features are absent in the weak frontogenesis composite, which exhibits a stronger South Pacific Subtropical High close to the continent. At 250 hPa the strong FGD composite exhibits a trough over the Andes with a wind speed maximum to its east. Both of these features are associated with the deepening of the NAL in the literature. These are not present in the weak FGD composites. Strong events show an intense quasi meridional corridor of water vapor transport from the Amazon to the subtropics that encounters westerly flow in the neighborhood of the AC. This is absent in weak events. A preliminary analysis of precipitation is carried out using the GPCP daily data set. An intense precipitation nucleus appears slightly northeast of the AC, with maximum intensity in the day that follows the strong events. Weak events exhibit a drying of the subtropics instead, between one and three days after the events. Higher precipitation over the oceanic South Atlantic Convergence Zone can be also observed. Analogous composites were constructed for the presence and absence of both the AC and the LPT, showing similar characteristics to the strong and weak FGD event composites respectively, but with lower intensities. This shows that by selecting strong FGD events, intense NAL and LPT events are also singled out.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1122
Author(s):  
Monica Ionita ◽  
Viorica Nagavciuc

The role of the large-scale atmospheric circulation in producing heavy rainfall events and floods in the eastern part of Europe, with a special focus on the Siret and Prut catchment areas (Romania), is analyzed in this study. Moreover, a detailed analysis of the socio-economic impacts of the most extreme flood events (e.g., July 2008, June–July 2010, and June 2020) is given. Analysis of the largest flood events indicates that the flood peaks have been preceded up to 6 days in advance by intrusions of high Potential Vorticity (PV) anomalies toward the southeastern part of Europe, persistent cut-off lows over the analyzed region, and increased water vapor transport over the catchment areas of Siret and Prut Rivers. The vertically integrated water vapor transport prior to the flood peak exceeds 300 kg m−1 s−1, leading to heavy rainfall events. We also show that the implementation of the Flood Management Plan in Romania had positive results during the 2020 flood event compared with the other flood events, when the authorities took several precaution measurements that mitigated in a better way the socio-economic impact and risks of the flood event. The results presented in this study offer new insights regarding the importance of large-scale atmospheric circulation and water vapor transport as drivers of extreme flooding in the eastern part of Europe and could lead to a better flood forecast and flood risk management.


2009 ◽  
Vol 24 (6) ◽  
pp. 1732-1747 ◽  
Author(s):  
Alain Roberge ◽  
John R. Gyakum ◽  
Eyad H. Atallah

Abstract Significant cool season precipitation along the western coast of North America is often associated with intense water vapor transport (IWVT) from the Pacific Ocean during favorable synoptic-scale flow regimes. These relatively narrow and intense regions of water vapor transport can originate in either the tropical or subtropical oceans, and sometimes have been referred to as Pineapple Express events in previous literature when originating near Hawaii. However, the focus of this paper will be on diagnosing the synoptic-scale signatures of all significant water vapor transport events associated with poleward moisture transport impacting the western coast of Canada, regardless of the exact points of origin of the associated atmospheric river. A trajectory analysis is used to partition the events as a means of creating coherent and meaningful synoptic-scale composites. The results indicate that these IWVT events can be clustered by the general area of origin of the majority of the saturated parcels impacting British Columbia and the Yukon Territories. IWVT events associated with more zonal trajectories are characterized by a strong and mature Aleutian low, whereas IWVT events associated with more meridional trajectories are often characterized by an anticyclone situated along the California or Oregon coastline, and a relatively mature poleward-traveling cyclone, commonly originating in the central North Pacific.


1986 ◽  
Vol 108 (1) ◽  
pp. 19-27 ◽  
Author(s):  
L. M. Hanna ◽  
P. W. Scherer

A steady-state, one-dimensional theoretical model of human respiratory heat and water vapor transport is developed. Local mass transfer coefficients measured in a cast replica of the upper respiratory tract are incorporated into the model along with heat transfer coefficients determined from the Chilton-Colburn analogy and from data in the literature. The model agrees well with reported experimental measurements and predicts that the two most important parameters of the human air-conditioning process are: 1) the blood temperature distribution along the airway walls, and 2) the total cross-sectional area and perimeter of the nasal cavity. The model also shows that the larynx and pharynx can actually gain water over a respiratory cycle and are the regions of the respiratory tract most subject to drying. With slight modification, the model can be used to investigate respiratory heat and water vapor transport in high stress environments, pollutant gas uptake in the respiratory tract, and the connection between respiratory air-conditioning and the function of the mucociliary escalator.


Sign in / Sign up

Export Citation Format

Share Document