scholarly journals Large scale features associated with strong frontogenesis in equivalent potential temperature in the South American subtropics east of the Andes

2009 ◽  
Vol 22 ◽  
pp. 73-78 ◽  
Author(s):  
J. M. Arraut ◽  
H. M. J. Barbosa

Abstract. South American subtropics east of the Andes exhibit a region of intense climatological frontogenesis in equivalent potential temperature (EPT) in the December to March season, mostly produced by deformation of the wind field. The goal of this paper is to investigate the large scale features associated with intense and weak frontogenesis by deformation (FGD) in EPT in the region where it attains its climatological maximum. This can be approximately delimited by 32–42° S and 66–69° W, which is small enough as to contain only one synoptic perturbation at a time. The spatial average of the positive values of frontogenesis at 850 hPa over the whole region (DFG+) is used to represent the strength of the perturbation. ECMWF ERA-40 reanalysis data set is used to calculate DFG+ at six hour intervals for 21 seasons (1981–2002). Compositing analysis is carried out for strong (above the 0.75 quantile) and weak (below the 0.25 quantile) events. For strong events the geopotential field at 850 hPa exhibits the North Argentinean Low (NAL), a transient trough and the Low Pressure Tongue East of the Andes (LPT). Upon comparison with the composite field of FGD it can be observed that FGD exhibits a strong maximum over the Argentinean Col (AC) which separates the NAL and the trough. These features are absent in the weak frontogenesis composite, which exhibits a stronger South Pacific Subtropical High close to the continent. At 250 hPa the strong FGD composite exhibits a trough over the Andes with a wind speed maximum to its east. Both of these features are associated with the deepening of the NAL in the literature. These are not present in the weak FGD composites. Strong events show an intense quasi meridional corridor of water vapor transport from the Amazon to the subtropics that encounters westerly flow in the neighborhood of the AC. This is absent in weak events. A preliminary analysis of precipitation is carried out using the GPCP daily data set. An intense precipitation nucleus appears slightly northeast of the AC, with maximum intensity in the day that follows the strong events. Weak events exhibit a drying of the subtropics instead, between one and three days after the events. Higher precipitation over the oceanic South Atlantic Convergence Zone can be also observed. Analogous composites were constructed for the presence and absence of both the AC and the LPT, showing similar characteristics to the strong and weak FGD event composites respectively, but with lower intensities. This shows that by selecting strong FGD events, intense NAL and LPT events are also singled out.

2009 ◽  
Vol 22 ◽  
pp. 67-72 ◽  
Author(s):  
H. M. J. Barbosa ◽  
J. M. Arraut

Abstract. Previous studies have found the South American subtropics to exhibit high climatological frontogenesis in equivalent potential temperature during the austral summer. An important contribution to this pattern is given by frontogenesis over the Argentinean Col (AC), which separates the Northwestern Argentinean Low (NAL) from transient troughs to the south of it. The NAL and the Low Pressure Tongue east of the Andes (LPT) promote efficient transport of Amazonian humidity to the subtropics during the incursion of transient disturbances over the continent. The convergence of this strong warm and humid flow with mid-latitude air brought into the subtropics by the disturbance occurs preferentially in the neighborhood of the AC. The main difficulty in quantifying the contribution of the NAL, AC and LPT structure to frontogenesis in the South American subtropics is the automatic detection of the AC and LPT. In this paper an algorithm developed to this end is briefly presented and applied to obtain statistics on the role of these structures in frontogenesis. Six-hourly data from ECMWF ERA-40 Reanalysis over 21 austral summer periods (December–March) is used. Occurrences of the AC are highly concentrated between 34–39° S and 66–69° W, being present in this region in 42% of the time instants analyzed. The spatial average of the positive values of the frontogenesis over this region was calculated for each time step as a measure of intensity and histograms were built for the cases when the AC was and was not found inside this region. Mean, median and mode are larger for the distribution of cases with the presence of the AC. In addition, we present the frequency of occurrence of the AC as a function of the frontogenesis, showing that it grows with the intensity of the frontogenesis, rising above the 0.955 quantile. We have not found any correlation between the AC frequency and the frontolysis intensity.


2012 ◽  
Vol 69 (3) ◽  
pp. 875-890 ◽  
Author(s):  
Frédéric Laliberté ◽  
Tiffany Shaw ◽  
Olivier Pauluis

Abstract An analysis of the overturning circulation in dry isentropic coordinates using reanalysis data is presented. The meridional mass fluxes on surfaces of constant dry potential temperature but distinct equivalent potential temperature are separated into southward and northward contributions. The separation identifies thermodynamically distinct mass fluxes moving in opposite directions. The eddy meridional water vapor transport is shown to be associated with large poleward and equatorward mass fluxes occurring at the same value of dry potential temperature but different equivalent potential temperature. These mass fluxes, referred to here as the moist recirculation, are associated with an export of water vapor from the subtropics connecting the Hadley cell to the midlatitude storm tracks. The poleward branch of the moist recirculation occurs at mean equivalent potential temperatures comparable to upper tropospheric dry potential temperature values, indicating that typical poleward-moving air parcels can ascend to the tropopause. The analysis suggests that these air parcels ascend on the equatorward side of storm tracks by following moist isentropes reminiscent of upright deep convection, while on the poleward side their moist isentropes are indicative of large-scale slantwise convection. In the equatorward branch, the analysis describes typical air parcels that follow their dry isentropes until they get injected into the boundary layer where they are subsequently moistened. The moist recirculation along with the mean equivalent potential temperature of its poleward and equatorward components are used to recover an approximate overturning circulation on moist isentropes from which it is shown that the moist recirculation accounts for the difference between the meridional circulation averaged on dry and on moist isentropes.


2019 ◽  
Vol 100 (5) ◽  
pp. 873-895 ◽  
Author(s):  
Carl M. Thomas ◽  
David M. Schultz

AbstractFronts can be computed from gridded datasets such as numerical model output and reanalyses, resulting in automated surface frontal charts and climatologies. Defining automated fronts requires quantities (e.g., potential temperature, equivalent potential temperature, wind shifts) and kinematic functions (e.g., gradient, thermal front parameter, and frontogenesis). Which are the most appropriate to use in different applications remains an open question. This question is investigated using two quantities (potential temperature and equivalent potential temperature) and three functions (magnitude of the horizontal gradient, thermal front parameter, and frontogenesis) from both the context of real-time surface analysis and climatologies from 38 years of reanalyses. The strengths of potential temperature to identify fronts are that it represents the thermal gradients and its direct association with the kinematics and dynamics of fronts. Although climatologies using potential temperature show features associated with extratropical cyclones in the storm tracks, climatologies using equivalent potential temperature include moisture gradients within air masses, most notably at low latitudes that are unrelated to the traditional definition of a front, but may be representative of a broader definition of an airmass boundary. These results help to explain previously published frontal climatologies featuring maxima of fronts in the subtropics and tropics. The best function depends upon the purpose of the analysis, but Petterssen frontogenesis is attractive, both for real-time analysis and long-term climatologies, in part because of its link to the kinematics and dynamics of fronts. Finally, this study challenges the conventional definition of a front as an airmass boundary and suggests that a new, dynamically based definition would be useful for some applications.


2015 ◽  
Vol 72 (9) ◽  
pp. 3639-3646 ◽  
Author(s):  
David M. Romps

Abstract For an adiabatic parcel convecting up or down through the atmosphere, it is often assumed that its moist static energy (MSE) is conserved. Here, it is shown that the true conserved variable for this process is MSE minus convective available potential energy (CAPE) calculated as the integral of buoyancy from the parcel’s height to its level of neutral buoyancy and that this variable is conserved even when accounting for full moist thermodynamics and nonhydrostatic pressure forces. In the calculation of a dry convecting parcel, conservation of MSE minus CAPE gives the same answer as conservation of entropy and potential temperature, while the use of MSE alone can generate large errors. For a moist parcel, entropy and equivalent potential temperature give the same answer as MSE minus CAPE only if the parcel ascends in thermodynamic equilibrium. If the parcel ascends with a nonisothermal mixed-phase stage, these methods can give significantly different answers for the parcel buoyancy because MSE minus CAPE is conserved, while entropy and equivalent potential temperature are not.


2007 ◽  
Vol 135 (1) ◽  
pp. 240-246 ◽  
Author(s):  
Matthew L. Grzych ◽  
Bruce D. Lee ◽  
Catherine A. Finley

Abstract Data collected during Project Analysis of the Near-Surface Wind and Environment along the Rear-flank of Supercells (ANSWERS) provided an opportunity to test recently published associations between rear-flank downdraft (RFD) thermodynamic characteristics and supercell tornadic activity on a set of 10 events from the northern plains. On average, RFDs associated with tornadic supercells had surface equivalent potential temperature and virtual potential temperature values only slightly lower than storm inflow values. RFDs associated with nontornadic supercells had mean group equivalent potential temperature and virtual potential temperature values that were colder relative to storm inflow values than their respective tornadic counterparts. Additionally, the analysis revealed that RFDs associated with tornadic supercells had higher CAPE and lower convective inhibition than the RFDs of nontornadic supercells, on average. The results of this study provide further support for the general concept that a thermodynamic delineation generally exists between the RFDs of tornadic and nontornadic supercells.


2010 ◽  
Vol 23 (11) ◽  
pp. 3077-3093 ◽  
Author(s):  
Olivier Pauluis ◽  
Arnaud Czaja ◽  
Robert Korty

Abstract Differential heating of the earth’s atmosphere drives a global circulation that transports energy from the tropical regions to higher latitudes. Because of the turbulent nature of the flow, any description of a “mean circulation” or “mean parcel trajectories” is tied to the specific averaging method and coordinate system. In this paper, the NCEP–NCAR reanalysis data spanning 1970–2004 are used to compare the mean circulation obtained by averaging the flow on surfaces of constant liquid water potential temperature, or dry isentropes, and on surfaces of constant equivalent potential temperature, or moist isentropes. While the two circulations are qualitatively similar, they differ in intensity. In the tropics, the total mass transport on dry isentropes is larger than the circulation on moist isentropes. In contrast, in midlatitudes, the total mass transport on moist isentropes is between 1.5 and 3 times larger than the mass transport on dry isentropes. It is shown here that the differences between the two circulations can be explained by the atmospheric transport of water vapor. In particular, the enhanced mass transport on moist isentropes corresponds to a poleward flow of warm moist air near the earth’s surface in midlatitudes. This low-level poleward flow does not appear in the zonally averaged circulation on dry isentropes, as it is hidden by the presence of a larger equatorward flow of drier air at same potential temperature. However, as the equivalent potential temperature in this low-level poleward flow is close to the potential temperature of the air near the tropopause, it is included in the total circulation on moist isentropes. In the tropics, the situation is reversed: the Hadley circulation transports warm moist air toward the equator, and in the opposite direction to the flow at upper levels, and the circulation on dry isentropes is larger than that on moist isentropes. The relationship between circulation and entropy transport is also analyzed. A gross stratification is defined as the ratio of the entropy transport to the net transport on isentropic surfaces. It is found that in midlatitudes the gross stability for moist entropy is approximately the same as that for dry entropy. The gross stratification in the midlatitude circulation differs from what one would expect for either an overturning circulation or horizontal mixing; rather, it confirms that warm moist subtropical air ascends into the upper troposphere within the storm tracks.


Sign in / Sign up

Export Citation Format

Share Document