scholarly journals Measurement of Convective Entrainment Using Lagrangian Particles

2013 ◽  
Vol 70 (1) ◽  
pp. 266-277 ◽  
Author(s):  
Kyongmin Yeo ◽  
David M. Romps

Abstract Lagrangian particle tracking is used in a large-eddy simulation to study an individual cumulus congestus. This allows for the direct measurement of the convective entrainment rate and of the residence times of entrained parcels within the cloud. The entrainment rate obtained by Lagrangian direct measurement is found to be higher than that obtained using the recently introduced method of Eulerian direct measurement. This discrepancy is explained by the fast recirculation of air in and out of cloudy updrafts, which Eulerian direct measurement is unable to resolve. By filtering these fast recirculations, the Lagrangian calculation produces a result in very good agreement with the Eulerian calculation. The Lagrangian method can also quantify some aspects of entrainment that cannot be probed with Eulerian methods. For instance, it is found that more than half of the air that is entrained by the cloud during its lifetime is air that was previously detrained by the cloud. Nevertheless, the cloud is highly diluted by entrained air: for cloudy air above 2 km, its mean height of origin is well above the cloud base. This paints a picture of a cloud that rapidly entrains both environmental air and its own detritus.

2009 ◽  
Vol 137 (3) ◽  
pp. 1083-1110 ◽  
Author(s):  
Andrew S. Ackerman ◽  
Margreet C. vanZanten ◽  
Bjorn Stevens ◽  
Verica Savic-Jovcic ◽  
Christopher S. Bretherton ◽  
...  

Abstract Cloud water sedimentation and drizzle in a stratocumulus-topped boundary layer are the focus of an intercomparison of large-eddy simulations. The context is an idealized case study of nocturnal stratocumulus under a dry inversion, with embedded pockets of heavily drizzling open cellular convection. Results from 11 groups are used. Two models resolve the size distributions of cloud particles, and the others parameterize cloud water sedimentation and drizzle. For the ensemble of simulations with drizzle and cloud water sedimentation, the mean liquid water path (LWP) is remarkably steady and consistent with the measurements, the mean entrainment rate is at the low end of the measured range, and the ensemble-average maximum vertical wind variance is roughly half that measured. On average, precipitation at the surface and at cloud base is smaller, and the rate of precipitation evaporation greater, than measured. Including drizzle in the simulations reduces convective intensity, increases boundary layer stratification, and decreases LWP for nearly all models. Including cloud water sedimentation substantially decreases entrainment, decreases convective intensity, and increases LWP for most models. In nearly all cases, LWP responds more strongly to cloud water sedimentation than to drizzle. The omission of cloud water sedimentation in simulations is strongly discouraged, regardless of whether or not precipitation is present below cloud base.


2010 ◽  
Vol 67 (5) ◽  
pp. 1655-1666 ◽  
Author(s):  
David M. Romps ◽  
Zhiming Kuang

Abstract Tracers are used in a large-eddy simulation of shallow convection to show that stochastic entrainment (and not cloud-base properties) determines the fate of convecting parcels. The tracers are used to diagnose the correlations between a parcel’s state above the cloud base and both the parcel’s state at the cloud base and its entrainment history. The correlation with the cloud-base state goes to zero a few hundred meters above the cloud base. On the other hand, correlations between a parcel’s state and its net entrainment are large. Evidence is found that the entrainment events may be described as a stochastic Poisson process. A parcel model is constructed with stochastic entrainment that is able to replicate the mean and standard deviation of cloud properties. Turning off cloud-base variability has little effect on the results, which suggests that stochastic mass-flux models may be initialized with a single set of properties. The success of the stochastic parcel model suggests that it holds promise as the framework for a convective parameterization.


2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Yunfei Ma ◽  
Jiahuan Cui ◽  
Nagabhushana Rao Vadlamani ◽  
Paul Tucker

Inlet distortion often occurs under off-design conditions when a flow separates within an intake and this unsteady phenomenon can seriously impact fan performance. Fan–distortion interaction is a highly unsteady aerodynamic process into which high-fidelity simulations can provide detailed insights. However, due to limitations on the computational resource, the use of an eddy resolving method for a fully resolved fan calculation is currently infeasible within industry. To solve this problem, a mixed-fidelity computational fluid dynamics method is proposed. This method uses the large Eddy simulation (LES) approach to resolve the turbulence associated with separation and the immersed boundary method (IBM) with smeared geometry (IBMSG) to model the fan. The method is validated by providing comparisons against the experiment on the Darmstadt Rotor, which shows a good agreement in terms of total pressure distributions. A detailed investigation is then conducted for a subsonic rotor with an annular beam-generating inlet distortion. A number of studies are performed in order to investigate the fan's influence on the distortions. A comparison to the case without a fan shows that the fan has a significant effect in reducing distortions. Three fan locations are examined which reveal that the fan nearer to the inlet tends to have a higher pressure recovery. Three beams with different heights are also tested to generate various degrees of distortion. The results indicate that the fan can suppress the distortions and that the recovery effect is proportional to the degree of inlet distortion.


2018 ◽  
Vol 75 (11) ◽  
pp. 3911-3924 ◽  
Author(s):  
Daniel Hernandez-Deckers ◽  
Steven C. Sherwood

Abstract Mixing is one of the most important processes associated with atmospheric moist convection. It determines the two-way interaction between clouds and their environment, thus having a direct impact on the time evolution of convection. The fractional entrainment rate ε—the main parameter related to mixing—is often parameterized in global circulation models as a function of updraft properties, and at the same time has a strong influence on how convection evolves. Within the framework of cumulus thermal vortices in large-eddy simulations of convection, here we first investigate the validity of some of the most common parameterizations of ε, and then investigate how relevant ε is for the fate of these thermals. We find that 1/R, where R is a measure of the thermal’s radius, best parameterizes ε, but it explains only about 20% of the total variance. On the other hand, we find that both ε and favorable initial conditions—including high initial saturated fraction of the thermals—are key factors that affect the thermals’ ascent rate, mean buoyancy, and distance traveled. The lifetimes of thermals, however, seem not to be affected significantly by either ε or initial conditions, which supports the view of cumulus convection as a succession of many short-lived thermals. Finally, our results suggest that for the majority of in-cloud cumulus thermals the important role of environmental moisture in the deepening of convection results mainly from providing the initial moisture for the short-lived thermals as they initiate at different altitudes above cloud base, rather than favoring their buoyancy as they rise through it.


2019 ◽  
Vol 142 (6) ◽  
Author(s):  
Mandana S. Saravani ◽  
Nicholas J. DiPasquale ◽  
Ahmad I. Abbas ◽  
Ryoichi S. Amano

Abstract This study presents findings on combined effects of Reynolds number and rotational effect for a two-pass channel with a 180-deg turn, numerically and experimentally. To have a better understanding of the flow behavior and to create a baseline for future studies, a smooth wall channel with the square cross section is used in this study. The Reynolds number varies between 6000 and 35,000. Furthermore, by changing the rotational speed, the maximum rotation number of 1.5 is achieved. For the numerical investigation, large eddy simulation (LES) is utilized. Results from the numerical study show a good agreement with the experimental data. From the results, it can be concluded that increasing both Reynolds number and rotational speed is in favor of the heat transfer coefficient enhancement, especially in the turn region.


2017 ◽  
Vol 14 (03) ◽  
pp. 1750021 ◽  
Author(s):  
A. Niktash ◽  
B. P. Huynh

A windcatcher is a structure for providing natural ventilation using wind power; it is usually fitted on the roof of a building to exhaust the inside stale air to the outside and supplies the outside fresh air into the building interior space working by pressure difference between outside and inside of the building. In this paper, the behavior of free wind flow through a three-dimensional room fitted with a centered position two-canal bottom shape windcatcher model is investigated numerically, using a commercial computational fluid dynamics (CFD) software package and LES (Large Eddy Simulation) CFD method. The results have been compared with the obtained results for the same model but using RANS (Reynolds Averaged Navier–Stokes) CFD method. The model with its surrounded space has been considered in both method. It is found that the achieved results for the model from LES method are in good agreement with RANS method’s results for the same model.


2011 ◽  
Vol 139 (2) ◽  
pp. 444-456 ◽  
Author(s):  
Jordan T. Dawe ◽  
Philip H. Austin

Abstract Direct calculations of the entrainment and detrainment of air into and out of clouds require knowledge of the relative velocity difference between the air and the cloud surface. However, a discrete numerical model grid forces the distance moved by a cloud surface over a time step to be either zero or the width of a model grid cell. Here a method for the subgrid interpolation of a cloud surface on a discrete numerical model grid is presented. This method is used to calculate entrainment and detrainment rates for a large-eddy simulation (LES) model, which are compared with rates calculated via the direct flux method of Romps. The comparison shows good agreement between the two methods as long as the model clouds are well resolved by the model grid spacing. This limitation of this technique is offset by the ability to resolve fluxes on much finer temporal and spatial scales, making it suitable for calculating entrainment and detrainment profiles for individual clouds.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Camilo Andrés Sedano ◽  
Omar Darío López ◽  
Alexander Ladino ◽  
Felipe Muñoz

A computational model using Large Eddy Simulation (LES) for turbulence modelling was implemented, by means of the Eddy Dissipation Concept (EDC) combustion model using the fireFoam solver. A small methanol pool fire experiment was simulated in order to validate and compare the numerical results, hence trying to validate the effectiveness of the solver. A detailed convergence analysis is performed showing that a mesh of approximately two million elements is sufficient to achieve satisfactory numerical results (including chemical kinetics). A good agreement was achieved with some of the experimental and previous computational results, especially in the prediction of the flame height and the average temperature contours.


Author(s):  
Mehrdad Shademan ◽  
Vesselina Roussinova ◽  
Ron Barron ◽  
Ram Balachandar

Large Eddy Simulation (LES) has been carried out to study the flow of a turbulent impinging jet with large nozzle height-to-diameter ratio. The dynamic Smagorinsky model was used to simulate the subgrid-scale stresses. The jet exit Reynolds number is 28,000. The study presents a detailed evaluation of the flow characteristics of an impinging jet with nozzle height of 20 diameters above the plate. Results of the mean normalized centerline velocity and wall shear stress show good agreement with previous experiments. Analysis of the flow field shows that vortical structures generated due to the Kelvin-Helmholtz instabilities in the shear flow close to the nozzle undergo break down or merging when moving towards the plate. Unlike impinging jets with small stand-off distance where the ring-like vortices keep their interconnected shape upon reaching the plate, no sign of interconnection was observed on the plate for this large stand-off distance. A large deflection of the jet axis was observed for this type of impinging jet when compared to the cases with small nozzle height-to-diameter ratios.


Sign in / Sign up

Export Citation Format

Share Document