scholarly journals Deep Convection Triggering by Boundary Layer Thermals. Part I: LES Analysis and Stochastic Triggering Formulation

2014 ◽  
Vol 71 (2) ◽  
pp. 496-514 ◽  
Author(s):  
Nicolas Rochetin ◽  
Fleur Couvreux ◽  
Jean-Yves Grandpeix ◽  
Catherine Rio

Abstract This paper proposes a new formulation of the deep convection triggering for general circulation model convective parameterizations. This triggering is driven by evolving properties of the strongest boundary layer thermals. To investigate this, a statistical analysis of large-eddy simulation cloud fields in a case of transition from shallow to deep convection over a semiarid land is carried out at different stages of the transition from shallow to deep convection. Based on the dynamical and geometrical properties at cloud base, a new computation of the triggering is first proposed. The analysis of the distribution law of the maximum size of the thermals suggests that, in addition to this necessary condition, another triggering condition is required, that is, that this maximum horizontal size should exceed a certain threshold. This is explicitly represented stochastically. Therefore, the new formulation integrates the whole transition process from the first cloud to the first deep convective cell and can be decomposed into three steps: (i) the appearance of clouds, (ii) crossing of the inhibition layer, and (iii) deep convection triggering.

2009 ◽  
Vol 66 (11) ◽  
pp. 3277-3296 ◽  
Author(s):  
James J. Benedict ◽  
David A. Randall

Abstract The detailed dynamic and thermodynamic space–time structures of the Madden–Julian oscillation (MJO) as simulated by the superparameterized Community Atmosphere Model version 3.0 (SP-CAM) are analyzed. Superparameterization involves substituting conventional boundary layer, moist convection, and cloud parameterizations with a configuration of cloud-resolving models (CRMs) embedded in each general circulation model (GCM) grid cell. Unlike most GCMs that implement conventional parameterizations, the SP-CAM displays robust atmospheric variability on intraseasonal space and time (30–60 days) scales. The authors examine a 19-yr SP-CAM simulation based on the Atmospheric Model Intercomparison Project protocol, forced by prescribed sea surface temperatures. Overall, the space–time structures of MJO convective disturbances are very well represented in the SP-CAM. Compared to observations, the model produces a similar vertical progression of increased moisture, warmth, and heating from the boundary layer to the upper troposphere as deep convection matures. Additionally, important advective and convective processes in the SP-CAM compare favorably with those in observations. A deficiency of the SP-CAM is that simulated convective intensity organized on intraseasonal space–time scales is overestimated, particularly in the west Pacific. These simulated convective biases are likely due to several factors including unrealistic boundary layer interactions, a lack of weakening of the simulated disturbance over the Maritime Continent, and mean state differences.


2014 ◽  
Vol 71 (2) ◽  
pp. 515-538 ◽  
Author(s):  
Nicolas Rochetin ◽  
Jean-Yves Grandpeix ◽  
Catherine Rio ◽  
Fleur Couvreux

Abstract This paper presents a stochastic triggering parameterization for deep convection and its implementation in the latest standard version of the Laboratoire de Météorologie Dynamique–Zoom (LMDZ) general circulation model: LMDZ5B. The derivation of the formulation of this parameterization and the justification, based on large-eddy simulation results, for the main hypothesis was proposed in Part I of this study. Whereas the standard triggering formulation in LMDZ5B relies on the maximum vertical velocity within a mean bulk thermal, the new formulation presented here (i) considers a thermal size distribution instead of a bulk thermal, (ii) provides a statistical lifting energy at cloud base, (iii) proposes a three-step trigger (appearance of clouds, inhibition crossing, and exceeding of a cross-section threshold), and (iv) includes a stochastic component. Here the complete implementation is presented, with its coupling to the thermal model used to treat shallow convection in LMDZ5B. The parameterization is tested over various cases in a single-column model framework. A sensitivity study to each parameter introduced is also carried out. The impact of the new triggering is then evaluated in the single-column version of LMDZ on several case studies and in full 3D simulations. It is found that the new triggering (i) delays deep convection triggering, (ii) suppresses it over oceanic trade wind cumulus zones, (iii) increases the low-level cloudiness, and (iv) increases the convective variability. The scale-aware nature of this parameterization is also discussed.


2017 ◽  
Vol 122 (13) ◽  
pp. 6818-6843 ◽  
Author(s):  
Etienne Vignon ◽  
Frédéric Hourdin ◽  
Christophe Genthon ◽  
Hubert Gallée ◽  
Eric Bazile ◽  
...  

2021 ◽  
Author(s):  
Rishav Goyal ◽  
Martin Jucker ◽  
Alex Sen Gupta ◽  
Harry Hendon ◽  
Matthew England

Abstract A distinctive feature of the Southern Hemisphere (SH) extratropical atmospheric circulation is the quasi-stationary zonal wave 3 (ZW3) pattern, characterized by three high and three low-pressure centers around the SH extratropics. This feature is present in both the mean atmospheric circulation and its variability on daily, seasonal and interannual timescales. While the ZW3 pattern has significant impacts on meridional heat transport and Antarctic sea ice extent, the reason for its existence remains uncertain, although it has long been assumed to be linked to the existence of three major land masses in the SH extratropics. Here we use an atmospheric general circulation model to show that the stationery ZW3 pattern is instead driven by zonal asymmetric deep atmospheric convection in the tropics, with little to no role played by the orography or land masses in the extratropics. Localized regions of deep convection in the tropics form a local Hadley cell which in turn creates a wave source in the subtropics that excites a poleward and eastward propagating wave train which forms stationary waves in the SH high latitudes. Our findings suggest that changes in tropical deep convection, either due to natural variability or climate change, will impact the zonal wave 3 pattern, with implications for Southern Hemisphere climate, ocean circulation, and sea-ice.


2020 ◽  
Vol 20 (11) ◽  
pp. 6607-6630 ◽  
Author(s):  
Peter Kuma ◽  
Adrian J. McDonald ◽  
Olaf Morgenstern ◽  
Simon P. Alexander ◽  
John J. Cassano ◽  
...  

Abstract. Southern Ocean (SO) shortwave (SW) radiation biases are a common problem in contemporary general circulation models (GCMs), with most models exhibiting a tendency to absorb too much incoming SW radiation. These biases have been attributed to deficiencies in the representation of clouds during the austral summer months, either due to cloud cover or cloud albedo being too low. The problem has been the focus of many studies, most of which utilised satellite datasets for model evaluation. We use multi-year ship-based observations and the CERES spaceborne radiation budget measurements to contrast cloud representation and SW radiation in the atmospheric component Global Atmosphere (GA) version 7.1 of the HadGEM3 GCM and the MERRA-2 reanalysis. We find that the prevailing bias is negative in GA7.1 and positive in MERRA-2. GA7.1 performs better than MERRA-2 in terms of absolute SW bias. Significant errors of up to 21 W m−2 (GA7.1) and 39 W m−2 (MERRA-2) are present in both models in the austral summer. Using ship-based ceilometer observations, we find low cloud below 2 km to be predominant in the Ross Sea and the Indian Ocean sectors of the SO. Utilising a novel surface lidar simulator developed for this study, derived from an existing Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP) – active remote sensing simulator (ACTSIM) spaceborne lidar simulator, we find that GA7.1 and MERRA-2 both underestimate low cloud and fog occurrence relative to the ship observations on average by 4 %–9 % (GA7.1) and 18 % (MERRA-2). Based on radiosonde observations, we also find the low cloud to be strongly linked to boundary layer atmospheric stability and the sea surface temperature. GA7.1 and MERRA-2 do not represent the observed relationship between boundary layer stability and clouds well. We find that MERRA-2 has a much greater proportion of cloud liquid water in the SO in austral summer than GA7.1, a likely key contributor to the difference in the SW radiation bias. Our results suggest that subgrid-scale processes (cloud and boundary layer parameterisations) are responsible for the bias and that in GA7.1 a major part of the SW radiation bias can be explained by cloud cover underestimation, relative to underestimation of cloud albedo.


2000 ◽  
Vol 53 (1) ◽  
pp. 98-104 ◽  
Author(s):  
Paul G. Myers ◽  
Eelco J. Rohling

AbstractAn oceanic general circulation model, previously used to simulate the conditions associated with the Holocene Sapropel S1, is used to simulate the effects of a climate deterioration (represented as a cooling event) on the sapropelic circulation mode. The enhanced cooling (2°–3°C) induces deep convection in the Adriatic and the Gulf of Lions and intermediate water formation in the Aegean, where in all cases there had previously been only stagnant unventilated waters. The depths of ventilation (to ∼1250 m) are in agreement with core data from this period. The short decadal timescales involved in modifying the sapropelic circulation suggest that such a climatic deterioration may be associated with the interruption of S1 between 7100 and 6900 14C yr B.P., which divided the sapropel into two subunits.


2010 ◽  
Vol 67 (7) ◽  
pp. 2171-2193 ◽  
Author(s):  
Minoru Chikira ◽  
Masahiro Sugiyama

Abstract A new cumulus parameterization is developed for which an entraining plume model is adopted. The lateral entrainment rate varies vertically depending on the surrounding environment. Two different formulations are examined for the rate. The cumulus ensemble is spectrally represented according to the updraft velocity at cloud base. Cloud-base mass flux is determined with prognostic convective kinetic energy closure. The entrainment rate tends to be large near cloud base because of the small updraft velocity near that level. Deep convection tends to be suppressed when convective available potential energy is small because of upward reduction of in-cloud moist static energy. Dry environmental air significantly reduces in-cloud humidity mainly because of the large entrainment rate in the lower troposphere, which leads to suppression of deep convection, consistent with observations and previous results of cloud-resolving models. The change in entrainment rate has the potential to influence cumulus convection through many feedbacks. The results of an atmospheric general circulation model are improved in both climatology and variability. A representation of the South Pacific convergence zone and the double intertropical convergence zone is improved. The moist Kelvin waves are represented without empirical triggering schemes with a reasonable equivalent depth. A spectral analysis shows a strong signal of the Madden–Julian oscillation. The scheme provides new insights and better understanding of the interaction between cumuli and the surrounding environment.


2010 ◽  
Vol 23 (13) ◽  
pp. 3676-3698 ◽  
Author(s):  
Akira Kuwano-Yoshida ◽  
Shoshiro Minobe ◽  
Shang-Ping Xie

Abstract The precipitation response to sea surface temperature (SST) gradients associated with the Gulf Stream is investigated using an atmospheric general circulation model. Forced by observed SST, the model simulates a narrow band of precipitation, surface convergence, and evaporation that closely follows the Gulf Stream, much like satellite observations. Such a Gulf Stream rainband disappears in the model when the SST front is removed by horizontally smoothing SST. The analysis herein shows that it is convective precipitation that is sensitive to SST gradients. The Gulf Stream anchors a convective rainband by creating surface wind convergence and intensifying surface evaporation on the warmer flank. Deep convection develops near the Gulf Stream in summer when the atmosphere is conditionally unstable. As a result, a narrow band of upward velocity develops above the Gulf Stream throughout the troposphere in summer, while it is limited to the lower troposphere in other seasons.


2010 ◽  
Vol 10 (8) ◽  
pp. 3463-3478 ◽  
Author(s):  
C. Rio ◽  
F. Hourdin ◽  
A. Chédin

Abstract. The thermal plume model, a mass-flux scheme originally developed to represent the vertical transport by convective structures within the boundary layer, is adapted to the representation of plumes generated by fires, with the aim of estimating the height at which fire emissions are actually injected in the atmosphere. The parameterization, which takes into account the excess of near surface temperature induced by fires and the mixing between convective plumes and environmental air, is first evaluated on two well-documented fires. Simulations over Southern Africa performed with the general circulation model LMDZ over one month show that the CO2 can be injected far above the boundary layer height, leading to a daily excess of CO2 in the mid-troposphere of an order of 2 ppmv. These results agree with satellite retrievals of a diurnal cycle of CO2 in the free troposphere over regions affected by biomass burning in the Tropics.


Sign in / Sign up

Export Citation Format

Share Document