scholarly journals Some Aspects of Western Hemisphere Circulation and the Madden–Julian Oscillation

2014 ◽  
Vol 71 (6) ◽  
pp. 2027-2039 ◽  
Author(s):  
Paul E. Roundy

Abstract Although the greatest variance in convection associated with the Madden–Julian oscillation (MJO) occurs over the Indo-Pacific warm pool, the MJO is associated with substantial circulation patterns in the tropics and the extratropics of the Western Hemisphere. Reanalysis data suggest that upper-tropospheric easterly wind anomalies on the equator between 40° and 140°W precede 86% of active convective phases of MJO events greater than one standard deviation in amplitude over the Indian Ocean basin during the Northern Hemisphere winter. Composites of those MJO events that are preceded by westerly wind anomalies and those events preceded by easterly wind anomalies are compared. Results show that those events that are preceded by westerly wind anomalies fail to thrive and do not yield the amplitude in convection or the canonical atmospheric circulation response that is associated with those preceded by easterly wind. The composite of events preceded by easterly winds reveals that these winds amplify coincident with arrival of an anticyclone into the tropics from a wave train that extends across the middle latitudes of the Pacific Ocean and North America. The resultant easterlies then radiate eastward across Africa to the Indian Ocean basin at the phase speed of convectively coupled Kelvin waves, where they are joined by other anticyclones propagating into the tropics, apparently facilitating westward outflow from the amplifying Indian Ocean basin convection.

2009 ◽  
Vol 137 (10) ◽  
pp. 3254-3268 ◽  
Author(s):  
Ping Liu ◽  
Masaki Satoh ◽  
Bin Wang ◽  
Hironori Fudeyasu ◽  
Tomoe Nasuno ◽  
...  

Abstract This study discloses detailed Madden–Julian oscillation (MJO) characteristics in the two 30-day integrations of the global cloud-system-resolving Nonhydrostatic Icosahedral Atmospheric Model (NICAM) using the all-season real-time multivariate MJO index of Wheeler and Hendon. The model anomaly is derived by excluding the observed climatology because the simulation is sufficiently realistic. Results show that the MJO has a realistic evolution in amplitude pattern, geographical locations, eastward propagation, and baroclinic- and westward-tilted structures. In the central Indian Ocean, convection develops with the low-level easterly wind anomaly then matures where the low-level easterly and westerly anomalies meet. Anomalous moisture tilts slightly with height. In contrast, over the western Pacific, the convection grows with a low-level westerly anomaly. Moisture fluctuations, leading convection in eastward propagation, tilt clearly westward with height. The frictional moisture convergence mechanism operates to maintain the MJO. Such success can be attributed to the explicit representation of the interactions between convection and large-scale circulations. The simulated event, however, grows faster in phases 2 and 3, and peaks with 30% higher amplitude than that observed, although the 7-km version shows slight improvement. The fast-growth phases are induced by the fast-growing low-level convergence in the Indian Ocean and the strongly biased ITCZ in the west Pacific when the model undergoes a spinup. The simulated OLR has a substantial bias in the tropics. Possible solutions to the deficiencies are discussed.


2011 ◽  
Vol 24 (23) ◽  
pp. 6146-6164 ◽  
Author(s):  
Xiao-Tong Zheng ◽  
Shang-Ping Xie ◽  
Qinyu Liu

Abstract The development of the Indian Ocean basin (IOB) mode and its change under global warming are investigated using a pair of integrations with the Geophysical Fluid Dynamics Laboratory Climate Model version 2.1 (CM2.1). In the simulation under constant climate forcing, the El Niño–induced warming over the tropical Indian Ocean (TIO) and its capacitor effect on summer northwest Pacific climate are reproduced realistically. In the simulation forced by increased greenhouse gas concentrations, the IOB mode and its summer capacitor effect are enhanced in persistence following El Niño, even though the ENSO itself weakens in response to global warming. In the prior spring, an antisymmetric pattern of rainfall–wind anomalies and the meridional SST gradient across the equator strengthen via increased wind–evaporation–sea surface temperature (WES) feedback. ENSO decays slightly faster in global warming. During the summer following El Niño decay, the resultant decrease in equatorial Pacific SST strengthens the SST contrast with the enhanced TIO warming, increasing the sea level pressure gradient and intensifying the anomalous anticyclone over the northwest Pacific. The easterly wind anomalies associated with the northwest Pacific anticyclone in turn sustain the SST warming over the north Indian Ocean and South China Sea. Thus, the increased TIO capacitor effect is due to enhanced air–sea interaction over the TIO and with the western Pacific. The implications for the observed intensification of the IOB mode and its capacitor effect after the 1970s are discussed.


2021 ◽  
Vol 22 (2) ◽  
pp. 71-84
Author(s):  
Sindy Maharani ◽  
Hasti Amrih Rejeki

Intisari Madden Julian Oscillation (MJO) merupakan osilasi gelombang submusiman di wilayah tropis yang berpropagasi ke arah timur dari Samudera Hindia melewati Benua Maritim Indonesia (BMI) hingga Samudera Pasifik. Propagasi MJO dapat meningkatkan konvektivitas dan curah hujan pada wilayah yang dilewatinya. Lampung merupakan salah satu wilayah di BMI bagian barat yang berbatasan dengan Samudera Hindia sebagai tempat awal kemunculan MJO. Posisi Lampung tersebut menyebabkan perbedaan insolasi antara daratan dan lautan secara diurnal sehingga siklus diurnal ikut berperan dalam pembentukan cuaca. Oleh karena itu penelitian ini bertujuan untuk mengetahui pengaruh propagasi MJO dari Fase 3-5 pada tahun 2018 terhadap siklus diurnal dinamika atmosfer dan curah hujan di Lampung. Siklus diurnal dianalisis dengan membagi empat periode waktu yaitu dini hari (00.00-06.00 LT), pagi hari (06.00-12.00 LT), siang hari (12.00-18.00 LT) dan malam hari (18.00-00.00 LT). Berdasarkan rata-rata komposit data Reanalysis ECMWF, GSMaP, dan curah hujan observasi didapatkan bahwa selama penjalarannya MJO menguat ketika Fase 3-4 dan melemah ketika Fase 5. Secara diurnal konvektivitas yang kuat dan curah hujan tinggi terjadi di perairan pada dini hari hingga pagi hari, di daerah pesisir pada siang hari, dan di daratan pada malam hari yang meningkat dari Fase 3-4 dan melemah pada Fase 5. Hujan menjalar dari Lampung bagian barat menuju Lampung bagian tengah dengan jeda waktu selama 2-5 jam ketika Fase 3, 4-7 jam ketika Fase 4, dan 1-2 jam ketika Fase 5. Pada Fase 3-5 hujan terjadi di Lampung bagian timur dengan perbedaan waktu 1-3 jam dari Lampung bagian tengah.   Abstract Madden Julian oscillation (MJO) is a sub-seasonal wave oscillation in the tropics that propagates eastward from the Indian Ocean through the Indonesian Maritime Continent (IMC) until the Pacific Ocean. MJO propagation can increase convective and rainfall in the regions it passes. Lampung is one of the regions in the western IMC which near the Indian Ocean for the MJO first appeared. The Lampung position causes different insolation between land and sea diurnally, so the diurnal cycles play an important role in weather formation. Therefore, this study aims to determine the effect of MJO propagation phases 3-5 in 2018 on the diurnal cycle of atmospheric dynamics and rainfall in Lampung. The diurnal cycle was analyzed by dividing four periods of time, in the early morning (00-06 LT), morning (06-12 LT), afternoon (12-18 LT), and night (18-00 LT). Based on the average composite of ECMWF, GSMaP, and precipitation observations data were obtained that propagation MJO strengthens during phase 3-4 and weakens during phase 5. Diurnal strong convective and high rainfall occur in the oceans from early morning to morning, in coastal during the day, and on land at night which increases from phase 3-4 and weakens in phase 5. Rain propagates from western Lampung to central Lampung with a time lag of 2-5 hours during phase 3, 4-7 hours when phases 4, and 1 -2 hours during phase 5. In the 3-5 phase, rain occurs in eastern Lampung with a time difference of 1-3 hours from central Lampung.  


2011 ◽  
Vol 68 (12) ◽  
pp. 3032-3051 ◽  
Author(s):  
Emily M. Riley ◽  
Brian E. Mapes ◽  
Stefan N. Tulich

Abstract The evolution of total cloud cover and cloud types is composited across the Madden–Julian oscillation (MJO) using CloudSat data for June 2006–May 2010. Two approaches are used to define MJO phases: 1) the local phase is determined at each longitude and time from filtered outgoing longwave radiation, and 2) the global phase is defined using a popular real-time multivariate MJO (RMM) index, which assigns the tropics to an MJO phase each day. In terms of local phase, CloudSat results show a familiar evolution of cloud type predominance: in the growing stages shallow clouds coexist with deep, intense, but narrow convective systems. Widespread cloud coverage and rainfall appear during the active phases, becoming more anvil dominated with time, and finally suppressed conditions return. Results are compared to the convectively coupled Kelvin wave, which has a similar life cycle to the MJO. Convection in the MJO tends to be modulated more by moisture variations compared to the Kelvin wave. In terms of global phases, wide deep precipitating, anvil, cumulus congestus, and altocumulus types exhibit similar eastward propagation from the Indian Ocean to the central Pacific, while the narrow deep precipitating type only propagates to the Maritime Continent. These propagating types also show coherent Western Hemisphere signals. Generally, negative Western Hemisphere anomalies occur when anomalies are positive over the Indian Ocean. In both approaches, sampling leads to pictorial renderings of actual clouds across MJO phases. These mosaics provide an objective representation of the cloud field that was unavailable before CloudSat and serve as a reminder to the complex nature of the MJO’s multiscale features.


2009 ◽  
Vol 137 (7) ◽  
pp. 2250-2262 ◽  
Author(s):  
Hai Lin ◽  
Gilbert Brunet

Using the homogenized Canadian historical daily surface air temperature (SAT) for 210 relatively evenly distributed stations across Canada, the lagged composites and probability of the above- and below-normal SAT in Canada for different phases of the Madden–Julian oscillation (MJO) in the winter season are analyzed. Significant positive SAT anomalies and high probability of above-normal events in the central and eastern Canada are found 5–15 days following MJO phase 3, which corresponds to an enhanced precipitation over the Indian Ocean and Maritime Continent and a reduced convective activity near the tropical central Pacific. On the other hand, a positive SAT anomaly appears over a large part of northern and northeastern Canada about 5–15 days after the MJO is detected in phase 7. An analysis of the evolution of the 500-hPa geopotential height and sea level pressure anomalies indicates that the Canadian SAT anomaly is a result of a Rossby wave train associated with the tropical convection anomaly of the MJO. Hence, the MJO phase provides useful information for the extended-range forecast of Canadian winter surface air temperature. This result also provides an important reference for numerical model verifications.


2005 ◽  
Vol 18 (19) ◽  
pp. 4046-4064 ◽  
Author(s):  
Guang J. Zhang ◽  
Mingquan Mu

Abstract This study presents the simulation of the Madden–Julian oscillation (MJO) in the NCAR CCM3 using a modified Zhang–McFarlane convection parameterization scheme. It is shown that, with the modified scheme, the intraseasonal (20–80 day) variability in precipitation, zonal wind, and outgoing longwave radiation (OLR) is enhanced substantially compared to the standard CCM3 simulation. Using a composite technique based on the empirical orthogonal function (EOF) analysis, the paper demonstrates that the simulated MJOs are in better agreement with the observations than the standard model in many important aspects. The amplitudes of the MJOs in 850-mb zonal wind, precipitation, and OLR are comparable to those of the observations, and the MJOs show clearly eastward propagation from the Indian Ocean to the Pacific. In contrast, the simulated MJOs in the standard CCM3 simulation are weak and have a tendency to propagate westward in the Indian Ocean. Nevertheless, there remain several deficiencies that are yet to be addressed. The time period of the MJOs is shorter, about 30 days, compared to the observed time period of 40 days. The spatial scale of the precipitation signal is smaller than observed. Examination of convective heating from both deep and shallow convection and its relationship with moisture anomalies indicates that near the mature phase of the MJO, regions of shallow convection developing ahead of the deep convection coincide with regions of positive moisture anomalies in the lower troposphere. This is consistent with the recent observations and theoretical development that shallow convection helps to precondition the atmosphere for MJO by moistening the lower troposphere. Sensitivity tests are performed on the individual changes in the modified convection scheme. They show that both change of closure and use of a relative humidity threshold for the convection trigger play important roles in improving the MJO simulation. Use of the new closure leads to the eastward propagation of the MJO and increases the intensity of the MJO signal in the wind field, while imposing a relative humidity threshold enhances the MJO variability in precipitation.


2021 ◽  
Author(s):  
Lian-Yi Zhang ◽  
Yan Du ◽  
Wenju Cai ◽  
Zesheng Chen ◽  
Tomoki Tozuka ◽  
...  

<p>This study identifies a new triggering mechanism of the Indian Ocean Dipole (IOD) from the Southern Hemisphere. This mechanism is independent from the El Niño/Southern Oscillation (ENSO) and tends to induce the IOD before its canonical peak season. The joint effects of this mechanism and ENSO may explain different lifetimes and strengths of the IOD. During its positive phase, development of sea surface temperature cold anomalies commences in the southern Indian Ocean, accompanied by an anomalous subtropical high system and anomalous southeasterly winds. The eastward movement of these anomalies enhances the monsoon off Sumatra-Java during May-August, leading to an early positive IOD onset. The pressure variability in the subtropical area is related with the Southern Annular Mode, suggesting a teleconnection between high-latitude and mid-latitude climate that can further affect the tropics. To include the subtropical signals may help model prediction of the IOD event.</p>


1969 ◽  
Vol 20 (1) ◽  
pp. 1 ◽  
Author(s):  
DJ Rochford

Tropical and subtropical water masses at surface and subsurface depths were separated by their salinity, temperature, oxygen, and nutrient characteristics. The annual mean depths and latitudinal extent of these water masses were determined. Annual changes in the upper 50 m were generally so small relative to those found in other oceans that advection and mixing must have been less important in their genesis than local climatic changes. There was a barely significant seasonal rhythm in surface phosphate and nitrate, with peak occurrences of each some 6 months apart. At each latitude the permanent thermal discontinuity centred around a particular isotherm varied little in intensity during the year, but rose and fell in accordance with surface currents. The thermocline south of c. 18�S. varied little in depth but greatly in intensity during the summer. The depth of the mixed layer was much less in summer and at all times shallower in the tropics. The depth of this layer was governed more by the accumulation of surface waters by zonal currents and eddies, than by wind stress or convective overturn. Therefore there was little difference from south to north, or month to month, in average nutrient values of this mixed column. The movement of the various surface waters, deduced from salinity and temperature changes during the year, usually agrees with geostrophic currents across 110�E, and ships' observations of surface currents in the south-east Indian Ocean.


Sign in / Sign up

Export Citation Format

Share Document