scholarly journals Assessing the Impact of the Tropopause on Mountain Waves and Orographic Precipitation Using Linear Theory and Numerical Simulations

2015 ◽  
Vol 72 (2) ◽  
pp. 803-820 ◽  
Author(s):  
Nicholas Siler ◽  
Dale Durran

Abstract The partial reflection of mountain waves at the tropopause has been studied extensively for its contribution to downslope windstorms, but its impact on orographic precipitation has not been addressed. Here linear theory and numerical simulations are used to investigate how the tropopause affects the vertical structure of mountain waves and, in turn, orographic precipitation. Relative to the no-tropopause case, wave-induced ascent above the windward slope of a two-dimensional ridge is found to be enhanced or diminished depending on the ratio of the tropopause height to the vertical wavelength of the mountain waves—defined here as the “nondimensional tropopause height” . In idealized simulations of flow over both two-dimensional and three-dimensional ridges, variations in are found to modulate the precipitation rate by roughly a factor of 2 under typical atmospheric conditions. The sensitivity of precipitation to is related primarily to the depth of windward ascent but also to the location and strength of leeside descent, with significant impacts on the distribution of precipitation across the range (i.e., the rain-shadow effect). Using a modified version of Smith and Barstad’s orographic precipitation model, variations in are found to produce significant rain-shadow variability in the Washington Cascades, perhaps explaining some of the variability in rain-shadow strength observed among Cascade storms.

2015 ◽  
Vol 45 (12) ◽  
pp. 3155-3167 ◽  
Author(s):  
Timour Radko ◽  
James Ball ◽  
John Colosi ◽  
Jason Flanagan

AbstractAn attempt is made to quantify the impact of stochastic wave–induced shears on salt fingers associated with internal waves in the ocean. The wave environment is represented by the superposition of Fourier components conforming to the Garrett–Munk (GM) spectrum with random initial phase distribution. The resulting time series of vertical shear are incorporated into a finger-resolving numerical model, and the latter is used to evaluate the equilibrium diapycnal fluxes of heat and salt. The proposed procedure makes it possible to simulate salt fingers in shears that are representative of typical oceanic conditions. This study finds that the shear-induced modification of salt fingers is largely caused by near-inertial motions. These relatively slow waves act to align salt fingers in the direction of shear, thereby rendering the double-diffusive dynamics effectively two-dimensional. Internal waves reduce the equilibrium vertical fluxes of heat and salt by a factor of 2 relative to those in the unsheared three-dimensional environment, bringing them close to the values suggested by corresponding two-dimensional simulations.


2013 ◽  
Vol 727 ◽  
pp. 236-255 ◽  
Author(s):  
D. Vigolo ◽  
I. M. Griffiths ◽  
S. Radl ◽  
H. A. Stone

AbstractUnderstanding the behaviour of particles entrained in a fluid flow upon changes in flow direction is crucial in problems where particle inertia is important, such as the erosion process in pipe bends. We present results on the impact of particles in a T-shaped channel in the laminar–turbulent transitional regime. The impacting event for a given system is described in terms of the Reynolds number and the particle Stokes number. Experimental results for the impact are compared with the trajectories predicted by theoretical particle-tracing models for a range of configurations to determine the role of the viscous boundary layer in retarding the particles and reducing the rate of collision with the substrate. In particular, a two-dimensional model based on a stagnation-point flow is used together with three-dimensional numerical simulations. We show how the simple two-dimensional model provides a tractable way of understanding the general collision behaviour, while more advanced three-dimensional simulations can be helpful in understanding the details of the flow.


1972 ◽  
Vol 1 (13) ◽  
pp. 146
Author(s):  
Joseph L. Hammack ◽  
Frederic Raichlen

A linear theory is presented for waves generated by an arbitrary bed deformation {in space and time) for a two-dimensional and a three -dimensional fluid domain of uniform depth. The resulting wave profile near the source is computed for both the two and three-dimensional models for a specific class of bed deformations; experimental results are presented for the two-dimensional model. The growth of nonlinear effects during wave propagation in an ocean of uniform depth and the corresponding limitations of the linear theory are investigated. A strategy is presented for determining wave behavior at large distances from the source where linear and nonlinear effects are of equal magnitude. The strategy is based on a matching technique which employs the linear theory in its region of applicability and an equation similar to that of Korteweg and deVries (KdV) in the region where nonlinearities are equal in magnitude to frequency dispersion. Comparison of the theoretical computations with the experimental results indicates that an equation of the KdV type is the proper model of wave behavior at large distances from the source region.


2019 ◽  
Vol 11 ◽  
pp. 175682931984612 ◽  
Author(s):  
Tao Yang ◽  
Mingjun Wei ◽  
Kun Jia ◽  
James Chen

It has been a challenge to simulate flexible flapping wings or other three-dimensional problems involving strong fluid–structure interactions. Solving a unified fluid–solid system in a monolithic manner improves both numerical stability and efficiency. The current algorithm considered a three-dimensional extension of an earlier work which formulated two-dimensional fluid–structure interaction monolithically under a unified framework for both fluids and solids. As the approach is extended from a two-dimensional to a three-dimensional configuration, a cell division technique and the associated projection process become necessary and are illustrated here. Two benchmark cases, a floppy viscoelastic particle in shear flow and a flow passing a rigid sphere, are simulated for validation. Finally, the three-dimensional monolithic algorithm is applied to study a micro-air vehicle with flexible flapping wings in a forward flight at different angles of attack. The simulation shows the impact from the angle of attack on wing deformation, wake vortex structures, and the overall aerodynamic performance.


1993 ◽  
Vol 256 ◽  
pp. 615-646 ◽  
Author(s):  
Paolo Orlandi ◽  
Roberto Verzicco

Accurate numerical simulations of vortex rings impinging on flat boundaries revealed the same features observed in experiments. The results for the impact with a free-slip wall compared very well with previous numerical simulations that used spectral methods, and were also in qualitative agreement with experiments. The present simulation is mainly devoted to studying the more realistic case of rings interacting with a no-slip wall, experimentally studied by Walker et al. (1987). All the Reynolds numbers studied showed a very good agreement between experiments and simulations, and, at Rev > 1000 the ejection of a new ring from the wall was seen. Axisymmetric simulations demonstrated that vortex pairing is the physical mechanism producing the ejection of the new ring. Three-dimensional simulations were also performed to investigate the effects of azimuthal instabilities. These simulations have confirmed that high-wavenumber instabilities originate in the compression phase of the secondary ring within the primary one. The large instability of the secondary ring has been explained by analysis of the rate-of-strain tensor and vorticity alignment. The differences between passive scalars and the vorticity field have been also investigated.


2020 ◽  
Vol 26 (6) ◽  
pp. 733-740
Author(s):  
Te-Chang Wu ◽  
Yu-Kun Tsui ◽  
Tai-Yuan Chen ◽  
Ching-Chung Ko ◽  
Chien-Jen Lin ◽  
...  

Background To investigate the discrepancy between two-dimensional digital subtraction angiography and three-dimensional rotational angiography for small (<5 mm) cerebral aneurysms and the impact on decision making among neuro-interventional experts as evaluated by online questionnaire. Materials and methods Eight small (<5 mm) ruptured aneurysms were visually identified in 16 image sets in either two-dimensional or three-dimensional format for placement in a questionnaire for 11 invited neuro-interventionalists. For each set, two questions were posed: Question 1: “Which of the following is the preferred treatment choice: simple coiling, balloon remodeling or stent assisted coiling?”; Question 2: “Is it achievable to secure the aneurysm with pure simple coiling?” The discrepancies of angio-architecture parameters and treatment choices between two-dimensional-digital subtraction angiography and three-dimensional rotational angiography were evaluated. Results In all eight cases, the neck images via three-dimensional rotational angiography were larger than two-dimensional-digital subtraction angiography with a mean difference of 0.95 mm. All eight cases analyzed with three-dimensional rotational angiography, but only one case with two-dimensional-digital subtraction angiography were classified as wide-neck aneurysms with dome-to-neck ratio < 1.5. The treatment choices based on the two-dimensional or three-dimensional information were different in 56 of 88 (63.6%) paired answers. Simple coiling was the preferred choice in 66 (75%) and 26 (29.6%) answers based on two-dimensional and three-dimensional information, respectively. Three types of angio-architecture with a narrow gap between the aneurysm sidewall and parent artery were proposed as an explanation for neck overestimation with three-dimensional rotational angiography. Conclusions Aneurysm neck overestimation with three-dimensional rotational angiography predisposed neuro-interventionalists to more complex treatment techniques. Additional two-dimensional information is crucial for endovascular treatment planning for small cerebral aneurysms.


1999 ◽  
Vol 09 (04) ◽  
pp. 695-704 ◽  
Author(s):  
V. N. BIKTASHEV ◽  
A. V. HOLDEN ◽  
S. F. MIRONOV ◽  
A. M. PERTSOV ◽  
A. V. ZAITSEV

Ventricular fibrillation is believed to be produced by the breakdown of re-entrant propagation waves of excitation into multiple re-entrant sources. These re-entrant waves may be idealized as spiral waves in two-dimensional, and scroll waves in three-dimensional excitable media. Optically monitored, simultaneously recorded endocardial and epicardial patterns of activation on the ventricular wall do not always show spiral waves. We show that numerical simulations, even with a simple homogeneous excitable medium, can reproduce the key features of the simultaneous endo- and epicardial visualizations of propagating activity, and so these recordings may be interpreted in terms of scroll waves within the ventricular wall.


2008 ◽  
Vol 136 (10) ◽  
pp. 3760-3780 ◽  
Author(s):  
Qingfang Jiang ◽  
James D. Doyle

The impact of diurnal forcing on a downslope wind event that occurred in Owens Valley in California during the Sierra Rotors Project (SRP) in the spring of 2004 has been examined based on observational analysis and diagnosis of numerical simulations. The observations indicate that while the upstream flow was characterized by persistent westerlies at and above the mountaintop level the cross-valley winds in Owens Valley exhibited strong diurnal variation. The numerical simulations using the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) capture many of the observed salient features and indicate that the in-valley flow evolved among three states during a diurnal cycle. Before sunrise, moderate downslope winds were confined to the western slope of Owens Valley (shallow penetration state). Surface heating after sunrise weakened the downslope winds and mountain waves and eventually led to the decoupling of the well-mixed valley air from the westerlies aloft around local noon (decoupled state). The westerlies plunged into the valley in the afternoon and propagated across the valley floor (in-valley westerly state). After sunset, the westerlies within the valley retreated toward the western slope, where the downslope winds persisted throughout the night.


Author(s):  
Chang-Fa An ◽  
Seyed Mehdi Alaie ◽  
Michael S. Scislowicz

Driven by fluid dynamics principles, the concept for buffeting reduction, a cavity installed at the leading edge of the sunroof opening, is analyzed. The cavity provides a room to hold the vortex, shed from upstream, and prevents the vortex from escaping and from directly intruding into the cabin. The concept has been verified by means of a two dimensional simulation for a production SUV using the CFD software — FLUENT. The simulation results show that the impact of the cavity is crucial to reduce buffeting. It is shown that the buffeting level may be reduced by 3 dB by adding a cavity to the sunroof configuration. Therefore, the cavity could be considered as a means of buffeting reduction, in addition to the three currently-known concepts: wind deflector, sunroof glass comfort position and cabin venting. Thorough understanding of the buffeting mechanism helps explain why and how the cavity works to reduce buffeting. Investigation of the buffeting-related physics provides a deep insight into the flow nature and, therefore, a useful hint to geometry modification for buffeting reduction. The buffeting level may be further reduced by about 4 dB or more by cutting the corners of the sunroof opening into smooth ramps, guided by ideas coming from careful examining the physics of flow. More work including three dimensional simulation and wind tunnel experiment should follow in order to develop more confidence in the functionality of the cavity to hopefully promote this idea to the level that it can be utilized in a feasible way to address sunroof buffeting.


2018 ◽  
Vol 849 ◽  
pp. 1-34 ◽  
Author(s):  
Lennon Ó Náraigh ◽  
Peter D. M. Spelt

We study unstable waves in gas–liquid two-layer channel flows driven by a pressure gradient, under stable stratification, not assumed to be set in motion impulsively. The basis of the study is direct numerical simulation (DNS) of the two-phase Navier–Stokes equations in two and three dimensions for moderately large Reynolds numbers, accompanied by a theoretical description of the dynamics in the linear regime (Orr–Sommerfeld–Squire equations). The results are compared and contrasted across a range of density ratios $r=\unicode[STIX]{x1D70C}_{liquid}/\unicode[STIX]{x1D70C}_{gas}$. Linear theory indicates that the growth rate of small-amplitude interfacial disturbances generally decreases with increasing $r$; at the same time, the cutoff wavenumbers in both streamwise and spanwise directions increase, leading to an ever-increasing range of unstable wavenumbers, albeit with diminished growth rates. The analysis also demonstrates that the most dangerous mode is two-dimensional in all cases considered. The results of a comparison between the DNS and linear theory demonstrate a consistency between the two approaches: as such, the route to a three-dimensional flow pattern is direct in these cases, i.e. through the strong influence of the linear instability. We also characterize the nonlinear behaviour of the system, and we establish that the disturbance vorticity field in two-dimensional systems is consistent with a mechanism proposed previously by Hinch (J. Fluid Mech., vol. 144, 1984, p. 463) for weakly inertial flows. A flow-pattern map constructed from two-dimensional numerical simulations is used to describe the various flow regimes observed as a function of density ratio, Reynolds number and Weber number. Corresponding simulations in three dimensions confirm that the flow-pattern map can be used to infer the fate of the interface there also, and show strong three-dimensionality in cases that exhibit violent behaviour in two dimensions, or otherwise the development of behaviour that is nearly two-dimensional behaviour possibly with the formation of a capillary ridge. The three-dimensional vorticity field is also analysed, thereby demonstrating how streamwise vorticity arises from the growth of otherwise two-dimensional modes.


Sign in / Sign up

Export Citation Format

Share Document