scholarly journals Observations of Stably Stratified Flow through a Microscale Gap

2021 ◽  
Vol 78 (1) ◽  
pp. 189-208
Author(s):  
Daniel Vassallo ◽  
Raghavendra Krishnamurthy ◽  
Robert Menke ◽  
Harindra J. S. Fernando

AbstractThis paper reports the findings of a comprehensive field investigation on flow through a mountain gap subject to a range of stably stratified environmental conditions. This study was embedded within the Perdigão field campaign, which was conducted in a region of parallel double-ridge topography with ridge-normal wind climatology. One of the ridges has a well-defined gap (col) at the top, and an array of in situ and remote sensors, including a novel triple Doppler lidar system, was deployed around it. The experimental design was mostly guided by previous numerical and theoretical studies conducted with an idealized configuration where a flow (with characteristic velocity U0 and buoyancy frequency N) approaches normal to a mountain of height h with a gap at its crest, for which the governing parameters are the dimensionless mountain height G = Nh/U0 and various gap aspect ratios. Modified forms of G were proposed to account for real-world atmospheric variability, and the results are discussed in terms of a gap-averaged value Gc. The nature of gap flow was highly dependent on Gc, wherein a nearly neutral flow regime (Gc < 1), a transitional mountain wave regime [Gc ~ O(1)], and a gap-jetting regime [Gc > O(1)] were identified. The measurements were in broad agreement with previous numerical and theoretical studies on a single ridge with a gap or double-ridge topography, although details vary. This is the first-ever detailed field study reported on microscale [O(100) m] gap flows, and it provides useful data and insights for future theoretical and numerical studies.

2000 ◽  
Author(s):  
Stephen E. Turner ◽  
Hongwei Sun ◽  
Mohammad Faghri ◽  
Otto J. Gregory

Abstract This paper presents an experimental investigation on nitrogen and helium flow through microchannels etched in silicon with hydraulic diameters between 10 and 40 microns, and Reynolds numbers ranging from 0.3 to 600. The objectives of this research are (1) to fabricate microchannels with uniform surface roughness and local pressure measurement; (2) to determine the friction factor within the locally fully developed region of the microchannel; and (3) to evaluate the effect of surface roughness on momentum transfer by comparison with smooth microchannels. The friction factor results are presented as the product of friction factor and Reynolds number plotted against Reynolds number. The following conclusions have been reached in the present investigation: (1) microchannels with uniform corrugated surfaces can be fabricated using standard photolithographic processes; and (2) surface features with low aspect ratios of height to width have little effect on the friction factor for laminar flow in microchannels.


2019 ◽  
Vol 874 ◽  
pp. 774-796 ◽  
Author(s):  
Hiroaki Ito ◽  
Toshihiro Omori ◽  
Takuji Ishikawa

The squirmer model of Lighthill and Blake has been widely used to analyse swimming ciliates. However, real ciliates are covered by hair-like organelles, called cilia; the differences between the squirmer model and real ciliates remain unclear. Here, we developed a ciliate model incorporating the distinct ciliary apparatus, and analysed motion using a boundary element–slender-body coupling method. This methodology allows us to accurately calculate hydrodynamic interactions between cilia and the cell body under free-swimming conditions. Results showed that an antiplectic metachronal wave was optimal in the swimming speed with various cell-body aspect ratios, which is consistent with former theoretical studies. Exploiting oblique wave propagation, we reproduced a helical trajectory, like Paramecium, although the cell body was spherical. We confirmed that the swimming velocity of model ciliates was well represented by the squirmer model. However, squirmer modelling outside the envelope failed to estimate the energy costs of swimming; over 90 % of energy was dissipated inside the ciliary envelope. The optimal swimming efficiency was given by the antiplectic wave; the value was 6.7 times larger than in-phase beating. Our findings provide a fundamental basis for modelling swimming micro-organisms.


1997 ◽  
Vol 119 (1) ◽  
pp. 188-192 ◽  
Author(s):  
O. Rahli ◽  
L. Tadrist ◽  
M. Miscevic ◽  
R. Santini

Experimental studies have been carried out on fluid flow through porous media made up of randomly packed monodisperse fibers. The permeability and the Kozeny-Carman parameter kk are deduced from experimental results. The variations of the permeability increase exponentially with the porosity. The parameter kk is a decreasing function of the porosity ε and tends asymptotically to a value close to that deduced from a modified Ergun relation. The important decrease, observed for small aspect ratios, is certainly an effect of the cut sections of fibers. The results in terms of parameter kk are systematically compared to those deduced from various theoretical models. The variation laws of the parameter kk, deduced from different models, present important discrepancies with our experimental results.


2012 ◽  
Vol 706 ◽  
pp. 34-45 ◽  
Author(s):  
Oriane Aubert ◽  
Michael Le Bars ◽  
Patrice Le Gal ◽  
Philip S. Marcus

AbstractWe validate a new law for the aspect ratio $\ensuremath{\alpha} = H/ L$ of vortices in a rotating, stratified flow, where $H$ and $L$ are the vertical half-height and horizontal length scale of the vortices. The aspect ratio depends not only on the Coriolis parameter $f$ and buoyancy (or Brunt–Väisälä) frequency $\bar {N} $ of the background flow, but also on the buoyancy frequency ${N}_{c} $ within the vortex and on the Rossby number $\mathit{Ro}$ of the vortex, such that $\ensuremath{\alpha} = f \mathop{ [\mathit{Ro}(1+ \mathit{Ro})/ ({ N}_{c}^{2} \ensuremath{-} {\bar {N} }^{2} )] }\nolimits ^{1/ 2} $. This law for $\ensuremath{\alpha} $ is obeyed precisely by the exact equilibrium solution of the inviscid Boussinesq equations that we show to be a useful model of our laboratory vortices. The law is valid for both cyclones and anticyclones. Our anticyclones are generated by injecting fluid into a rotating tank filled with linearly stratified salt water. In one set of experiments, the vortices viscously decay while obeying our law for $\ensuremath{\alpha} $, which decreases over time. In a second set of experiments, the vortices are sustained by a slow continuous injection. They evolve more slowly and have larger $\vert \mathit{Ro}\vert $ while still obeying our law for $\ensuremath{\alpha} $. The law for $\ensuremath{\alpha} $ is not only validated by our experiments, but is also shown to be consistent with observations of the aspect ratios of Atlantic meddies and Jupiter’s Great Red Spot and Oval BA. The relationship for $\ensuremath{\alpha} $ is derived and examined numerically in a companion paper by Hassanzadeh, Marcus & Le Gal (J. Fluid Mech., vol. 706, 2012, pp. 46–57).


1997 ◽  
Vol 119 (2) ◽  
pp. 331-340 ◽  
Author(s):  
F. B. Lin ◽  
F. Sotiropoulos

Various approaches for constructing artificial dissipation terms for three-dimensional artificial compressibility algorithms are presented and evaluated. Two, second-order accurate, central-differencing schemes, with explicitly added scalar and matrix-valued fourth-difference artificial dissipation, respectively, and a third-order accurate flux-difference splitting upwind scheme are implemented in a multigrid time-stepping procedure and applied to calculate laminar flow through a strongly curved duct. Extensive grid-refinement studies are carried out to investigate the grid sensitivity of each discretization approach. The calculations indicate that even the finest mesh employed, consisting of over 700,000 grid nodes, is not sufficient to establish grid independent solutions. However, all three schemes appear to converge toward the same solution as the grid spacing approaches zero. The matrix-valued dissipation scheme introduces the least amount of artificial dissipation and should be expected to yield the most accurate solutions on a given mesh. The flux-difference splitting upwind scheme, on the other hand, is more dissipative and, thus, particularly sensitive to grid resolution, but exhibits the best overall convergence characteristics on grids with large aspect ratios.


1982 ◽  
Author(s):  
Clifford W. Prettie
Keyword(s):  

1966 ◽  
Vol 88 (1) ◽  
pp. 121-131 ◽  
Author(s):  
M. L. Booy

Congruent velocity distributions in parallel channel cross sections are assumed in conventional flow theories for screw pumps. That assumption leads to nonuniform pressure distributions along the oblique channel ends. These pressures should be uniform when screw-pump inlet and discharge connections do not restrict flow. A new theory for isothermal flow through channels with large aspect ratios is derived based on uniform pressures along oblique ends. End-effect correction factors for drag flow and pressure back-flow rates are given as functions of L/D and helix angle. Calculated pressure distributions, streamlines, and the end factor for pressure backflow are compared with experimental values.


Sign in / Sign up

Export Citation Format

Share Document