scholarly journals A Simple Lagrangian Parcel Model for the Initiation of Summer-time Mesoscale Convective Systems over the Central United States

Author(s):  
Qiu Yang ◽  
L. Ruby Leung ◽  
Zhe Feng ◽  
Fengfei Song ◽  
Xingchao Chen

AbstractMesoscale convective systems (MCSs) account for more than 50% of summer-time precipitation over the central United States (US) and have a significant impact on local weather and hydrologic cycle. It is hypothesized that the inadequate treatment of MCSs is responsible for the longstanding warm and dry bias over the central US in coarse-resolution general circulation model (GCM) simulations. In particular, a better understanding of MCS initiation is still lacking. Here a single-column Lagrangian parcel model is first developed to simulate the basic features of a rising parcel. This simple model demonstrates the collective effects of boundary layer moistening and dynamical lifting in triggering convective initiation and reproduces successfully its early afternoon peak with surface equivalent potential temperature as a controlling factor. It also predicts that convection is harder to trigger in the future climate under global warming, consistent with the results from convection-permitting regional climate simulations. Then a multi-column model that includes an array of single-column models aligned in the east-west direction and incorporates idealized cold pool interaction mechanisms is developed. The multi-column model captures readily the cold pool induced upscale growth feature in MCS genesis from initially scattered convection that is organized into a mesoscale cluster in a few hours. It also highlights the crucial role of lifting effects due to cold pool collision and spreading, subsidence effect, and gust front propagation speed in controlling the final size of mesoscale clusters and cold pool regions. This simple model should be useful for understanding fundamental mechanisms of MCS initiation and providing guidance for improving MCS simulations in GCMs.

2003 ◽  
Vol 131 (8) ◽  
pp. 1939-1943
Author(s):  
David M. Brommer ◽  
Robert C. Balling ◽  
Randall S. Cerveny

Abstract In approximately half of Arizona's summer season (June–September) mesoscale convective systems evolve into mesoscale convective vortices (MCVs). Analysis of satellite imagery identified MCVs in Arizona over the period 1991–2000, and local and regional rawinsonde data discriminated conditions conducive for MCV development. These results indicate that MCVs are more likely to form from convective systems when the local and regional environments are characterized by relative stability in the 850–700-hPa layer and moderate wind shear in the 500–200-hPa layer. These characteristics are similar to results reported for MCV development in the central United States.


2021 ◽  
Vol 118 (43) ◽  
pp. e2105260118
Author(s):  
Huancui Hu ◽  
L. Ruby Leung ◽  
Zhe Feng

Land–atmosphere interactions play an important role in summer rainfall in the central United States, where mesoscale convective systems (MCSs) contribute to 30 to 70% of warm-season precipitation. Previous studies of soil moisture–precipitation feedbacks focused on the total precipitation, confounding the distinct roles of rainfall from different convective storm types. Here, we investigate the soil moisture–precipitation feedbacks associated with MCS and non-MCS rainfall and their surface hydrological footprints using a unique combination of these rainfall events in observations and land surface simulations with numerical tracers to quantify soil moisture sourced from MCS and non-MCS rainfall. We find that early warm-season (April to June) MCS rainfall, which is characterized by higher intensity and larger area per storm, produces coherent mesoscale spatial heterogeneity in soil moisture that is important for initiating summer (July) afternoon rainfall dominated by non-MCS events. On the other hand, soil moisture sourced from both early warm-season MCS and non-MCS rainfall contributes to lower-level atmospheric moistening favorable for upscale growth of MCSs at night. However, soil moisture sourced from MCS rainfall contributes to July MCS rainfall with a longer lead time because with higher intensity, MCS rainfall percolates into deeper soil that has a longer memory. Therefore, early warm-season MCS rainfall dominates soil moisture–precipitation feedback. This motivates future studies to examine the contribution of early warm-season MCS rainfall and associated soil moisture anomalies to predictability of summer rainfall in the major agricultural region of the central United States and other continental regions frequented by MCSs.


2017 ◽  
Vol 74 (12) ◽  
pp. 4213-4228 ◽  
Author(s):  
Changhai Liu ◽  
Mitchell W. Moncrieff

Abstract Numerical simulations are performed to investigate organized convection observed in the Asian summer monsoon and documented as a category of mesoscale convective systems (MCSs) over the U.S. continent during the warm season. In an idealized low-inhibition and unidirectional shear environment of the mei-yu moisture front, the structure of the simulated organized convection is distinct from that occurring in the classical quasi-two-dimensional, shear-perpendicular, and trailing stratiform (TS) MCS. Consisting of four airflow branches, a three-dimensional, eastward-propagating, downshear-tilted, shear-parallel MCS builds upshear by initiating new convection at its upstream end. The weak cold pool in the low-inhibition environment negligibly affects convection initiation, whereas convectively generated gravity waves are vital. Upstream-propagating gravity waves form a saturated or near-saturated moist tongue, and downstream-propagating waves control the initiation and growth of convection within a preexisting cloud layer. A sensitivity experiment wherein the weak cold pool is removed entirely intensifies the MCS and its interaction with the environment. The horizontal scale, rainfall rate, convective momentum transport, and transverse circulation are about double the respective value in the control simulation. The positive sign of the convective momentum transport contrasts with the negative sign for an eastward-propagating TS MCS. The structure of the simulated convective systems resembles shear-parallel organization in the intertropical convergence zone (ITCZ).


2017 ◽  
Vol 145 (6) ◽  
pp. 2177-2200 ◽  
Author(s):  
Russ S. Schumacher ◽  
John M. Peters

Abstract This study investigates the influences of low-level atmospheric water vapor on the precipitation produced by simulated warm-season midlatitude mesoscale convective systems (MCSs). In a series of semi-idealized numerical model experiments using initial conditions gleaned from composite environments from observed cases, small increases in moisture were applied to the model initial conditions over a layer either 600 m or 1 km deep. The precipitation produced by the MCS increased with larger moisture perturbations as expected, but the rainfall changes were disproportionate to the magnitude of the moisture perturbations. The experiment with the largest perturbation had a water vapor mixing ratio increase of approximately 2 g kg−1 over the lowest 1 km, corresponding to a 3.4% increase in vertically integrated water vapor, and the area-integrated MCS precipitation in this experiment increased by nearly 60% over the control. The locations of the heaviest rainfall also changed in response to differences in the strength and depth of the convectively generated cold pool. The MCSs in environments with larger initial moisture perturbations developed stronger cold pools, and the convection remained close to the outflow boundary, whereas the convective line was displaced farther behind the outflow boundary in the control and the simulations with smaller moisture perturbations. The high sensitivity of both the amount and location of MCS rainfall to small changes in low-level moisture demonstrates how small moisture errors in numerical weather prediction models may lead to large errors in their forecasts of MCS placement and behavior.


2007 ◽  
Vol 22 (4) ◽  
pp. 813-838 ◽  
Author(s):  
Israel L. Jirak ◽  
William R. Cotton

Abstract Mesoscale convective systems (MCSs) have a large influence on the weather over the central United States during the warm season by generating essential rainfall and severe weather. To gain insight into the predictability of these systems, the precursor environments of several hundred MCSs across the United States were reviewed during the warm seasons of 1996–98. Surface analyses were used to identify initiating mechanisms for each system, and North American Regional Reanalysis (NARR) data were used to examine the environment prior to MCS development. Similarly, environments unable to support organized convective systems were also investigated for comparison with MCS precursor environments. Significant differences were found between environments that support MCS development and those that do not support convective organization. MCSs were most commonly initiated by frontal boundaries; however, features that enhance convective initiation are often not sufficient for MCS development, as the environment needs also to be supportive for the development and organization of long-lived convective systems. Low-level warm air advection, low-level vertical wind shear, and convective instability were found to be the most important parameters in determining whether concentrated convection would undergo upscale growth into an MCS. Based on these results, an index was developed for use in forecasting MCSs. The MCS index assigns a likelihood of MCS development based on three terms: 700-hPa temperature advection, 0–3-km vertical wind shear, and the lifted index. An evaluation of the MCS index revealed that it exhibits features consistent with common MCS characteristics and is reasonably accurate in forecasting MCSs, especially given that convective initiation has occurred, offering the possibility of usefulness in operational forecasting.


2019 ◽  
Author(s):  
Samuel Nahmani ◽  
Olivier Bock ◽  
Françoise Guichard

Abstract. This study analyzes the characteristics of GPS tropospheric estimates (Zenith Wet Delays, and gradients, and post-fit phase residuals) during the passage of Mesoscale Convective Systems (MCSs) and evaluates their sensitivity to the research-level GPS data processing strategy implemented. Here, we focus on MCS events observed during the monsoon seasons of West Africa. This region is particularly well suited because of the high frequency of occurrence of MCSs in contrasting climatic environments between the Guinean coast and the Sahel. This contrast is well sampled data with the six AMMA GPS stations. Tropospheric estimates for 3-year period (2006–2008), processed with both GAMIT and GIPSY-OASIS software packages, were analyzed and inter-compared. First, the case an MCS which passed over Niamey, Niger, on 11 August 2006, demonstrates a strong impact of the MCS on GPS estimates and post-fit residuals when the GPS signals propagate through convective cells as detected on reflectivity maps from MIT’s C-band Doppler radar. The estimates are also capable of detecting changes in the structure and dynamics of the MCS. The sensitivity is however different depending on the tropospheric modeling approach adopted in the software. With GIPSY-OASIS, the high temporal sampling (5 min) of Zenith Wet Delays and gradients is well suited for detecting the small-scale, short-lived, convective cells, while the post-fit residuals remain quite small. With GAMIT, the lower temporal sampling of the estimated parameters (hourly for Zenith Wet Delays and daily for gradients) is not sufficient to capture the rapid delay variations associated with the passage of the MCS, but the post-fit phase residuals clearly reflect the presence of a strong refractivity anomaly. The results are generalized with a composite analysis of 414 MCS events observed over the 3-year period at the six GPS stations with the GIPSY-OASIS estimates. A systematic peak is found in the Zenith Wet Delays coincident with the cold-pool crossing time associated to the MCSs. The tropospheric gradients are reflecting the path of the MCS propagation (generally from East to West). This study concludes that Zenith Wet Delays, gradients, and post-fit phase residuals provide relevant and complementary information on MCSs passing over or in the vicinity of a GPS station.


2017 ◽  
Vol 30 (11) ◽  
pp. 4283-4298 ◽  
Author(s):  
R. Roca ◽  
T. Fiolleau ◽  
D. Bouniol

Abstract Mesoscale convective systems (MCSs) are important to the water and energy budget of the tropical climate and are essential ingredients of the tropical circulation. MCSs are readily observed in satellite infrared geostationary imagery as cloud clusters that evolve in time from small structures to well-organized large patches of cloud shield before dissipating. The MCS cloud shield is the result of a large ensemble of mesoscale dynamical, thermodynamical, and microphysical processes. This study shows that a simple parametric model can summarize the time evolution of the morphological characteristics of the cloud shield during the life cycle of the MCS. It consists of a growth–decay linear model of the cloud shield and is based on three parameters: the time of maximum extent, the maximum extent, and the duration of the MCS. It is shown that the time of maximum is frequently close to the middle of the life cycle and that the correlation between maximum extent and duration is strong all over the tropics. This suggests that 1 degree of freedom is left to summarize the life cycle of the MCS cloud shield. Such a model fits the observed MCS equally well, independent of the duration, size, location, and propagation characteristics, and its relevance is assessed for a large number of MCSs over three boreal summer periods over the whole tropical belt. The scaling of this simple model exhibits weak (strong) regional variability for the short- (long-) lived systems indicative of the primary importance of the internal dynamics of the systems to the large-scale environment for MCS sustainability.


Sign in / Sign up

Export Citation Format

Share Document