scholarly journals Intercomparison of MJO column moist static energy and water vapor budget among six modern reanalysis products

2021 ◽  
pp. 1-65
Author(s):  
Pengfei Ren ◽  
Daehyun Kim ◽  
Min-Seop Ahn ◽  
Daehyun Kang ◽  
Hong-Li Ren

AbstractThis study conducts an intercomparison of the column-integrated moist static energy (MSE) and water vapor budget of the Madden-Julian Oscillation (MJO) among six modern global reanalysis products (RAs). Inter-RA differences in the mean MSE, MJO MSE anomalies, individual MSE budget terms and their relative contributions to the propagation and maintenance of MJO MSE anomalies are examined. Also investigated is the relationship between the MJO column water vapor (CWV) budget residuals with the other CWV budget terms as well as the two parameters that characterize cloud-radiation feedback and moisture-convection coupling.Results show a noticeable inter-RA spread in the mean state MSE, especially its vertical structure. In all RAs, horizontal MSE advection dominates the propagation of the MJO MSE while column-integrated longwave radiative heating and vertical MSE advection are found to be the key processes for MJO maintenance. The MSE budget terms directly affected by the model parameterization schemes exhibit high uncertainty. The differences in anomalous vertical velocity mainly contribute to the large differences in vertical MSE advection among the RAs. The budget residuals show large inter-RA differences and have non-negligible contributions to MJO maintenance and propagation in most RAs.RAs that underestimate (overestimate) the strength of cloud-radiation feedback and the convective moisture adjustment timescale tend to have positive (negative) MJO CWV budget residual, indicating the critical role of these processes in the maintenance of MJO CWV anomalies. Our results emphasize that a correct representation of the interactions among moisture, convection, cloud, and radiation is the key for an accurate depiction of the MJO MSE and CWV budget in RAs.

2006 ◽  
Vol 63 (12) ◽  
pp. 3421-3436 ◽  
Author(s):  
Marat Khairoutdinov ◽  
David Randall

Results are presented from a high-resolution three-dimensional simulation of shallow-to-deep convection transition based on idealization of observations made during the Large-Scale Biosphere–Atmosphere (LBA) experiment in Amazonia, Brazil, during the Tropical Rainfall Measuring Mission (TRMM)-LBA mission on 23 February. The doubly periodic grid has 1536 × 1536 × 256 grid cells with horizontal grid spacing of 100 m, thus covering an area of 154 × 154 km2. The vertical resolution varies from 50 m in the boundary layer to 100 m in the free troposphere and gradually coarsens to 250 m near the domain top at 25.4 km. The length of the simulation is 6 h, starting from an early morning sounding corresponding to 0730 local time. Convection is forced by prescribed surface latent and sensible heat fluxes and prescribed horizontally uniform radiative heating Despite a considerable amount of convective available potential energy (CAPE) in the range of 1600–2400 J kg−1, and despite virtually no convective inhibition (CIN) in the mean sounding throughout the simulation, the cumulus convection starts as shallow, gradually developing into congestus, and becomes deep only toward the end of simulation. Analysis shows that the reason is that the shallow clouds generated by the boundary layer turbulence are too small to penetrate deep into the troposphere, as they are quickly diluted by mixing with the environment. Precipitation and the associated cold pools are needed to generate thermals big enough to support the growth of deep clouds. This positive feedback involving precipitation is supported by a sensitivity experiment in which the cold pools are effectively eliminated by artificially switching off the evaporation of precipitation; in the experiment, the convection remains shallow throughout the entire simulation, with a few congestus but no deep clouds. The probability distribution function (PDF) of cloud size during the shallow, congestus, and deep phases is analyzed using a new method. During each of the three phases, the shallow clouds dominate the mode of the PDFs at about 1-km diameter. During the deep phase, the PDFs show cloud bases as wide as 4 km. Analysis of the joint PDFs of cloud size and in-cloud variables demonstrates that, as expected, the bigger clouds are far less diluted above their bases than their smaller counterparts. Also, thermodynamic properties at cloud bases are found to be nearly identical for all cloud sizes, with the moist static energy exceeding the mean value by as much as 4 kJ kg−1. The width of the moist static energy distribution in the boundary layer is mostly due to variability of water vapor; therefore, clouds appear to grow from the air with the highest water vapor content available. No undiluted cloudy parcels are found near the level of neutral buoyancy. It appears that a simple entraining-plume model explains the entrainment rates rather well. The least diluted plumes in the simulation correspond to an entrainment parameter of about 0.1 km−1.


2014 ◽  
Vol 71 (11) ◽  
pp. 4276-4291 ◽  
Author(s):  
Adam Sobel ◽  
Shuguang Wang ◽  
Daehyun Kim

Abstract The authors analyze the column-integrated moist static energy budget over the region of the tropical Indian Ocean covered by the sounding array during the Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011 (CINDY2011)/Dynamics of the Madden–Julian Oscillation (DYNAMO) field experiment in late 2011. The analysis is performed using data from the sounding array complemented by additional observational datasets for surface turbulent fluxes and atmospheric radiative heating. The entire analysis is repeated using the ECMWF Interim Re-Analysis (ERA-Interim). The roles of surface turbulent fluxes, radiative heating, and advection are quantified for the two MJO events that occurred in October and November using the sounding data; a third event in December is also studied in the ERA-Interim data. These results are consistent with the view that the MJO’s moist static energy anomalies grow and are sustained to a significant extent by the radiative feedbacks associated with MJO water vapor and cloud anomalies and that propagation of the MJO is associated with advection of moist static energy. Both horizontal and vertical advection appear to play significant roles in the events studied here. Horizontal advection strongly moistens the atmosphere during the buildup to the active phase of the October event when the low-level winds switch from westerly to easterly. Horizontal advection strongly dries the atmosphere in the wake of the active phases of the November and December events as the westerlies associated with off-equatorial cyclonic gyres bring subtropical dry air into the convective region from the west and north. Vertical advection provides relative moistening ahead of the active phase and drying behind it, associated with an increase of the normalized gross moist stability.


2013 ◽  
Vol 70 (1) ◽  
pp. 187-192 ◽  
Author(s):  
Adam Sobel ◽  
Eric Maloney

Abstract The authors discuss modifications to a simple linear model of intraseasonal moisture modes. Wind–evaporation feedbacks were shown in an earlier study to induce westward propagation in an eastward mean low-level flow in this model. Here additional processes, which provide effective sources of moist static energy to the disturbances and which also depend on the low-level wind, are considered. Several processes can act as positive sources in perturbation easterlies: zonal advection (if the mean zonal moisture gradient is eastward), modulation of synoptic eddy drying by the MJO-scale wind perturbations, and frictional convergence. If the sum of these is stronger than the wind–evaporation feedback—as observations suggest may be the case, though with considerable uncertainty—the model produces unstable modes that propagate weakly eastward relative to the mean flow. With a small amount of horizontal diffusion or other scale-selective damping, the growth rate is greatest at the largest horizontal scales and decreases monotonically with wavenumber.


2020 ◽  
pp. 1-56
Author(s):  
Kyle Itterly ◽  
Patrick Taylor ◽  
J. Brent Roberts

AbstractDiurnal air-sea coupling affects climate modes such as the Madden-Julian Oscillation (MJO) via the regional moist static energy budget. Prior to MJO initiation, large-scale subsidence increases (decreases) surface shortwave insolation (winds). These act in concert to significantly warm the uppermost layer of the ocean over the course of a single day and the ocean mixed layer over the course of 1-2 weeks. Here, we provide an integrated analysis of multiple surface, top-of-atmosphere, and atmospheric column observations to assess the covariability related to regions of strong diurnal sea surface temperature (dSST) warming over 44 MJO events between 2000-2018 to assess their role in MJO initiation. Combining satellite observations of evaporation and precipitation with reanalysis moisture budget terms, we find 30-50% enhanced moistening over high dSST regions during late afternoon using either ERA5 or MERRA-2 despite large model biases. Diurnally developing moisture convergence, only modestly weaker evaporation, and diurnal minimum precipitation act to locally enhance moistening over broad regions of enhanced diurnal warming, which rectifies onto the larger scale. Field campaign ship and sounding data corroborate that strong dSST periods are associated with reduced middle tropospheric humidity and larger diurnal amplitudes of surface warming, evaporation, instability, and column moistening. Further, we find greater daytime increases in low cloud cover and evidence of enhanced radiative destabilization for the top 50th dSST percentile. Together, these results support that dSST warming acts in concert with large-scale dynamics to enhance moist static energy during the suppressed to active phase transition of the MJO.


2007 ◽  
Vol 64 (5) ◽  
pp. 1680-1693 ◽  
Author(s):  
Dargan M. W. Frierson ◽  
Isaac M. Held ◽  
Pablo Zurita-Gotor

Abstract A simplified moist general circulation model is used to study changes in the meridional transport of moist static energy by the atmosphere as the water vapor content is increased. The key assumptions of the model are gray radiation, with water vapor and other constituents having no effect on radiative transfer, and mixed layer aquaplanet boundary conditions, implying that the atmospheric meridional energy transport balances the net radiation at the top of the atmosphere. These simplifications allow the authors to isolate the effect of moisture on energy transports by baroclinic eddies in a relatively simple setting. The authors investigate the partition of moist static energy transport in the model into dry static energy and latent energy transports as water vapor concentrations are increased, by varying a constant in the Clausius–Clapeyron relation. The increase in the poleward moisture flux is rather precisely compensated by a reduction in the dry static energy flux. These results are interpreted with diffusive energy balance models (EBMs). The simplest of these is an analytic model that has the property of exact invariance of total energy flux as the moisture content is changed, but the assumptions underlying this model are not accurately satisfied by the GCM. A more complex EBM that includes expressions for the diffusivity, length scale, velocity scale, and latitude of maximum baroclinic eddy activity provides a better fit to the GCM’s behavior.


2018 ◽  
Vol 32 (2) ◽  
pp. 501-529 ◽  
Author(s):  
Kazuaki Yasunaga ◽  
Satoru Yokoi ◽  
Kuniaki Inoue ◽  
Brian E. Mapes

Abstract The budget of column-integrated moist static energy (MSE) is examined in wavenumber–frequency transforms of longitude–time sections over the tropical belt. Cross-spectra with satellite-derived precipitation (TRMM-3B42) are used to emphasize precipitation-coherent signals in reanalysis [ERA-Interim (ERAI)] estimates of each term in the budget equation. Results reveal different budget balances in convectively coupled equatorial waves (CCEWs) as well as in the Madden–Julian oscillation (MJO) and tropical depression (TD)-type disturbances. The real component (expressing amplification or damping of amplitude) for horizontal advection is modest for most wave types but substantially damps the MJO. Its imaginary component is hugely positive (it acts to advance phase) in TD-type disturbances and is positive for MJO and equatorial Rossby (ERn1) wave disturbances (almost negligible for the other CCEWs). The real component of vertical advection is negatively correlated (damping effect) with precipitation with a magnitude of approximately 10% of total latent heat release for all disturbances except for TD-type disturbance. This effect is overestimated by a factor of 2 or more if advection is computed using the time–zonal mean MSE, suggesting that nonlinear correlations between ascent and humidity would be positive (amplification effect). ERAI-estimated radiative heating has a positive real part, reinforcing precipitation-correlated MSE excursions. The magnitude is up to 14% of latent heating for the MJO and much less for other waves. ERAI-estimated surface flux has a small effect but acts to amplify MJO and ERn1 waves. The imaginary component of budget residuals is large and systematically positive, suggesting that the reanalysis model’s physical MSE sources would not act to propagate the precipitation-associated MSE anomalies properly.


2021 ◽  
Author(s):  
Chen-Shuo Fan ◽  
Dietmar Dommenget

Abstract In this study we present a diagnostic model for the large-scale tropical circulation (vertical motion) based on the moist static energy equation for first baroclinic mode anomalies (MSEB model). The aim of this model is to provide a basis for conceptual understanding of the drivers of the large-scale tropical circulation changes or variations as they are observed or simulated in Coupled Model Inter-comparison Project Phase (CMIP) models. The MSEB model is based on previous studies relating vertical motion in the tropics to the driving forces of the tropospheric column heating rate, advection of moisture and heat, and the moist stability of the air columns scaled by the first baroclinic mode. We apply and evaluate the skill of this model on the basis of observations (reanalysis) and CMIP model simulations of the large-scale tropical vertical motion. The model is capable of diagnosing the large-scale pattern of vertical motion of the mean state, annual cycle, interannual variability, model-to-model variations and in warmer climates of climate change scenarios with correlations of 0.6-0.8 and nearly unbiased amplitudes for the whole tropics (30°S-30°N). The skills are generally better over oceans at large scales and worse over land regions. The model also tends to have an upward motion bias at higher latitudes, but still has good correlations in variations even at the higher latitudes. It is further illustrated how the MSEB model can be used to diagnose the sensitivity of the tropical vertical motion to the forcing terms of the models for the mean state, seasonal cycle and interannual variability such as El Nino. The model clearly illustrates how the seasonal cycle in the circulation is driven by the incoming solar radiation and how the El Nino shift in the Walker circulation results mainly from the sea-surface temperature changes. Overall, the model provides a very good diagnostic tool to understand tropical circulation change on larger and longer (>month) time scales.


2014 ◽  
Vol 71 (10) ◽  
pp. 3747-3766 ◽  
Author(s):  
Hirohiko Masunaga ◽  
Tristan S. L’Ecuyer

Abstract Temporal variability in the moist static energy (MSE) budget is studied with measurements from a combination of different satellites including the Tropical Rainfall Measuring Mission (TRMM) and A-Train platforms. A composite time series before and after the development of moist convection is obtained from the observations to delineate the evolution of MSE and moisture convergences and, in their combination, gross moist stability (GMS). A new algorithm is then applied to estimate large-scale vertical motion from energy budget constraints through vertical-mode decomposition into first and second baroclinic modes and a background shallow mode. The findings are indicative of a possible mechanism of tropical convection. A gradual destabilization is brought about by the MSE convergence intrinsic to the positive second baroclinic mode (congestus mode) that increasingly counteracts a weak MSE divergence in the background state. GMS is driven to nearly zero as the first baroclinic mode begins to intensify, accelerating the growth of vigorous large-scale updrafts and deep convection. As the convective burst peaks, the positive second mode switches to the negative mode (stratiform mode) and introduces an abrupt rise in MSE divergence that likely discourages further maintenance of deep convection. The first mode quickly dissipates and GMS increases away from zero, eventually returning to the background shallow-mode state. A notable caveat to this scenario is that GMS serves as a more reliable metric when defined with a radiative heating rate included to offset MSE convergence.


2018 ◽  
Vol 75 (6) ◽  
pp. 2107-2123 ◽  
Author(s):  
Ángel F. Adames ◽  
Yi Ming

Abstract The mechanisms that lead to the propagation of anomalous moisture and moist static energy (MSE) in monsoon low and high pressure systems, collectively referred to as synoptic-scale monsoonal disturbances (SMDs), are investigated using daily output fields from GFDL’s atmospheric general circulation model, version 4.0 (AM4.0). On the basis of linear regression analysis of westward-propagating rainfall anomalies of time scales shorter than 15 days, it is found that SMDs are organized into wave trains of three to four individual cyclones and anticyclones. These events amplify over the Bay of Bengal, reach a maximum amplitude over the eastern coast of India, and dissipate as they approach the Arabian Sea. The structure and propagation of the simulated SMDs resemble those documented in observations. It is found that moisture and MSE anomalies exhibit similar horizontal structures in the simulated SMDs, indicating that moisture is the leading contributor to MSE. Propagation of the moisture anomalies is governed by vertical moisture advection, while the MSE anomalies propagate because of horizontal advection of dry static energy by the anomalous winds. By combining the budgets, we interpret the propagation of the moisture anomalies in terms of lifting that is forced by horizontal dry static energy advection, that is, ascent along sloping isentropes. This process moistens the lower free troposphere, producing an environment that is more favorable to deep convection. Ascent driven by radiative heating is of primary importance to the maintenance of the moisture anomalies.


2020 ◽  
Vol 77 (10) ◽  
pp. 3423-3440 ◽  
Author(s):  
Tao Feng ◽  
Jia-Yuh Yu ◽  
Xiu-Qun Yang ◽  
Ronghui Huang

AbstractThe companion of this paper, Part I, discovered the characteristics of the rainfall progression in tropical-depression (TD)-type waves over the western North Pacific. In Part II, the large-scale controls on the convective rainfall progression have been investigated using the ERA-Interim data and the TRMM 3B42 precipitation-rate data during June–October from 1998 to 2013 through budgets of moist static energy (MSE) and moisture. A buildup of column-integrated MSE occurs in advance of deep convection, and an export of MSE occurs following deep convection, which is consistent with the MSE recharge–discharge paradigm. The MSE recharge–discharge is controlled by horizontal processes, whereby horizontal moisture advection causes net MSE import prior to deep convection. Such moistening by horizontal advection creates a moist midtroposphere, which helps destabilize the atmospheric column, leading to the development of deep convective rainfall. Following the heaviest rainfall, negative horizontal moisture advection dries the troposphere, inhibiting convection. Such moistening and drying processes explain why deep convection can develop without preceding shallow convection. The advection of moisture anomalies by the mean horizontal flow controls the tropospheric moistening and drying processes. As the TD-type waves propagate northwestward in coincidence with the northwestward environmental flow, the moisture, or convective rainfall, is phase locked to the waves. The critical role of the MSE import by horizontal advection in modulating the rainfall progression is supported by the anomalous gross moist stability (AGMS), where the lowest AGMS corresponds to the quickest increase in the precipitation rate prior to the rainfall maximum.


Sign in / Sign up

Export Citation Format

Share Document