scholarly journals High-Latitude Contribution to Global Variability of Air–Sea Sensible Heat Flux

2012 ◽  
Vol 25 (10) ◽  
pp. 3515-3531 ◽  
Author(s):  
Xiangzhou Song ◽  
Lisan Yu

Abstract The study examined global variability of air–sea sensible heat flux (SHF) from 1980 to 2009 and the large-scale atmospheric and ocean circulations that gave rise to this variability. The contribution of high-latitude wintertime SHF was identified, and the relative importance of the effect of the sea–air temperature difference versus the effect of wind on decadal SHF variability was analyzed using an empirical orthogonal function (EOF) approach. The study showed that global SHF anomalies are strongly modulated by SHF at high latitudes (poleward of 45°) during winter seasons. Decadal variability of global wintertime SHF can be reasonably represented by the sum of two leading EOF modes, namely, the boreal wintertime SHF in the northern oceans and the austral wintertime SHF in the southern oceans. The study also showed that global wintertime SHF is modulated by the prominent modes of the large-scale atmospheric circulation at high latitudes. The increase of global SHF in the 1990s is attributable to the strengthening of the Southern Hemisphere annular mode index, while the decrease of global SHF after 2000 is due primarily to the downward trend of the Arctic Oscillation index. This study identified the important effects of wind direction and speed on SHF variability. Changes in winds modify the sea–air temperature gradient by advecting cold and dry air from continents and by imposing changes in wind-driven oceanic processes that affect sea surface temperature (SST). The pattern of air temperature anomalies dominates over the pattern of SST anomalies and dictates the pattern of decadal SHF variability.

1990 ◽  
Vol 36 (123) ◽  
pp. 217-221 ◽  
Author(s):  
Roger J. Braithwaite ◽  
Ole B. Olesen

AbstractDaily ice ablation on two outlet glaciers from the Greenland ice sheet, Nordbogletscher (1979–83) and Qamanârssûp sermia (1980–86), is related to air temperature by a linear regression equation. Analysis of this ablation-temperature equation with the help of a simple energy-balance model shows that sensible-heat flux has the greatest temperature response and accounts for about one-half of the temperature response of ablation. Net radiation accounts for about one-quarter of the temperature response of ablation, and latent-heat flux and errors account for the remainder. The temperature response of sensible-heat flux at QQamanârssûp sermia is greater than at Nordbogletscher mainly due to higher average wind speeds. The association of high winds with high temperatures during Föhn events further increases sensible-heat flux. The energy-balance model shows that ablation from a snow surface is only about half that from an ice surface at the same air temperature.


1985 ◽  
Vol 6 ◽  
pp. 158-160 ◽  
Author(s):  
Heidi Escher-Vetter

In this paper, some features of energy balance terms will be discussed in respect to the melting capacity available at the surface of Vernagtferner in the Oetztal Alps. The climatic pattern of summer 1982 is described, then the method of calculating individual terms (shortwave and longwave radiation balance, sensible and latent heat flux) from records of radiation, air temperature, humidity and wind. The results of these calculations are discussed for ice, firn and snow areas of the glacier. In particular the relationship between the four terms is shown for 15 July 1982, the day with highest meltwater production in 1982. These values are then compared with the maximum values of the individual terms, showing that the highest meltwater production is caused by the combination of quite high values of the individual terms, but not of the absolutely highest ones. The importance of sensible heat flux for meltwater production in 1982 is discussed: comparison between meltwater production for the whole summer and measured runoff shows reasonable accordance.


1990 ◽  
Vol 36 (123) ◽  
pp. 217-221 ◽  
Author(s):  
Roger J. Braithwaite ◽  
Ole B. Olesen

AbstractDaily ice ablation on two outlet glaciers from the Greenland ice sheet, Nordbogletscher (1979–83) and Qamanârssûp sermia (1980–86), is related to air temperature by a linear regression equation. Analysis of this ablation-temperature equation with the help of a simple energy-balance model shows that sensible-heat flux has the greatest temperature response and accounts for about one-half of the temperature response of ablation. Net radiation accounts for about one-quarter of the temperature response of ablation, and latent-heat flux and errors account for the remainder. The temperature response of sensible-heat flux at QQamanârssûp sermia is greater than at Nordbogletscher mainly due to higher average wind speeds. The association of high winds with high temperatures during Föhn events further increases sensible-heat flux. The energy-balance model shows that ablation from a snow surface is only about half that from an ice surface at the same air temperature.


2017 ◽  
Vol 56 (12) ◽  
pp. 3167-3185 ◽  
Author(s):  
Derek D. Jensen ◽  
Timothy A. Price ◽  
Daniel F. Nadeau ◽  
Jacob Kingston ◽  
Eric R. Pardyjak

AbstractData collected during a multiyear, wind-resource assessment over a multi-land-use coastal environment in Belize are used to study the development and decay of wind and turbulence through the morning and evening transitions. Observations were made on three tall masts, forming an inland transect of approximately 5 km. The wind distribution is found to be bimodal and governed by synoptic scales, with onshore and offshore flow regimes. The behavior between the coastal and inland sites is found to be very similar when the flow is directed offshore; for onshore flow, stark differences occur. The mean wind speed at the coastal site is approximately 20% greater than the most inland site and is nearly constant throughout the diurnal cycle. For both flow regimes, the influence of the land–sea breeze circulation is inconsequential relative to the large-scale synoptic forcing. Composite time series are used to study the evolution of sensible heat flux and turbulence kinetic energy (TKE) throughout the morning and evening transitions. The TKE budget reveals that at the coastal site mechanical production of TKE is much more important than buoyant production. This allows for the unexpected case in which TKE increases through the ET despite the decrease of buoyant TKE production. Multiresolution flux decomposition is used to further study this phenomenon as well as the evolution of the sensible heat flux at differing time scales. An idealized schematic is presented to illustrate the timing and structure of the morning and evening transitions for an inland site and a coastal site that are subjected to similar synoptic forcing.


1998 ◽  
Vol 34 (9) ◽  
pp. 2281-2288 ◽  
Author(s):  
Jingfeng Wang ◽  
Rafael L. Bras

2021 ◽  
Author(s):  
Lian Liu ◽  
Yaoming Ma ◽  
Massimo Menenti ◽  
Rongmingzhu Su ◽  
Nan Yao ◽  
...  

Abstract. Snow albedo is important to the land surface energy balance and to the water cycle. During snowfall and subsequent snowmelt, snow albedo is usually parameterized as functions of snow related variables in land surface models. However, the default snow albedo scheme in the widely used Noah land surface model shows evident shortcomings in land-atmosphere interactions estimates during snow events on the Tibetan Plateau. Here, we demonstrate that our improved snow albedo scheme performs well after including snow depth as an additional factor. By coupling the WRF and Noah models, this study comprehensively evaluates the performance of the improved snow albedo scheme in simulating eight snow events on the Tibetan Plateau. The modeling results are compared with WRF run with the default Noah scheme and in situ observations. The improved snow albedo scheme significantly outperforms the default Noah scheme in relation to air temperature, albedo and sensible heat flux estimates, by alleviating cold bias estimates, albedo overestimates and sensible heat flux underestimates, respectively. This in turn contributes to more accurate reproductions of snow event evolution. The averaged RMSE relative reductions (and relative increase in correlation coefficients) for air temperature, albedo, sensible heat flux and snow depth reach 27 % (5 %), 32 % (69 %), 13 % (17 %) and 21 % (108 %) respectively. These results demonstrate the strong potential of our improved snow albedo parameterization scheme for snow event simulations on the Tibetan Plateau. Our study provides a theoretical reference for researchers committed to further improving the snow albedo parameterization scheme.


Sign in / Sign up

Export Citation Format

Share Document