Simulated Relationships between Sea Surface Temperatures and Tropical Convection in Climate Models and Their Implications for Tropical Cyclone Activity

2012 ◽  
Vol 25 (22) ◽  
pp. 7884-7895 ◽  
Author(s):  
Jenni L. Evans ◽  
Jeffrey J. Waters

Abstract The impact of enhanced atmospheric CO2 concentrations on tropical convection and sea surface temperatures (SSTs) over the global tropics is assessed using five fully coupled atmospheric–oceanic general circulation models (AOGCMs). Relationships between SST and either outgoing longwave radiation or convective precipitation rates are evaluated for three climate states: present day, a doubled-CO2 scenario, and a quadrupled-CO2 scenario. All AOGCMs capture a relationship between present-day outgoing longwave radiation (OLR) and SST and between convective precipitation rate (PRC) and SST: deep tropical convection (DTC)—signified by rapidly decreasing OLR and rapidly increasing PRC rates—occurs above an SST threshold of around 25°C. Consistent across all AOGCMs, as concentrations increase to 2 × CO2 and 4 × CO2, the threshold SSTs for DTC to occur shift to 25.5°–28°C and 26.5°–30°C, respectively. Annual PRC rates in the 20°N–20°S region increase for two AOGCMs [Meteorological Research Institute Coupled General Circulation Model, version 2.3.2 (MRI CGCM2.3.2) and ECHAM5/Max Planck Institute Ocean Model (MPI-OM)] with increasing CO2, but PRC in the other three AOGCMs [Geophysical Fluid Dynamics Laboratory Climate Model versions 2.0 and 2.1 (GFDL CM2.0 and CM2.1) and National Center for Atmospheric Research (NCAR) Parallel Climate Model (PCM)] exhibits almost no change. Within this tropical zone, increased CO2 concentrations yield up to a 6.1% increase in the number of locations with monthly averaged PRC exceeding two established DTC thresholds (12 and 14 mm day−1). These results indicate that, although the SST threshold for DTC is projected to shift with increasing atmospheric CO2 concentrations, there will not be an expansion of regions experiencing DTC. One implication of these findings is that there will be little change in regions experiencing tropical cyclogenesis in future climate states.

2014 ◽  
Vol 27 (24) ◽  
pp. 9323-9336 ◽  
Author(s):  
Paul W. Staten ◽  
Thomas Reichler ◽  
Jian Lu

Abstract Tropospheric circulation shifts have strong potential to impact surface climate. However, the magnitude of these shifts in a changing climate and the attending regional hydrological changes are difficult to project. Part of this difficulty arises from the lack of understanding of the physical mechanisms behind the circulation shifts themselves. To better delineate circulation shifts and their respective causes the circulation response is decomposed into 1) the “direct” response to radiative forcings themselves and 2) the “indirect” response to changing sea surface temperatures. Using ensembles of 90-day climate model simulations with immediate switch-on forcings, including perturbed greenhouse gas concentrations, stratospheric ozone concentrations, and sea surface temperatures, this paper documents the direct and indirect transient responses of the zonal-mean general circulation, and investigates the roles of previously proposed mechanisms in shifting the midlatitude jet. It is found that both the direct and indirect wind responses often begin in the lower stratosphere. Changes in midlatitude eddies are ubiquitous and synchronous with the midlatitude zonal wind response. Shifts in the critical latitude of wave absorption on either flank of the jet are not indicted as primary factors for the poleward-shifting jet, although some evidence for increasing equatorward wave reflection over the Southern Hemisphere in response to sea surface warming is seen. Mechanisms for the Northern Hemisphere jet shift are less clear.


2020 ◽  
Vol 20 (1) ◽  
pp. 281-301 ◽  
Author(s):  
Le Kuai ◽  
Kevin W. Bowman ◽  
Kazuyuki Miyazaki ◽  
Makoto Deushi ◽  
Laura Revell ◽  
...  

Abstract. The top-of-atmosphere (TOA) outgoing longwave flux over the 9.6 µm ozone band is a fundamental quantity for understanding chemistry–climate coupling. However, observed TOA fluxes are hard to estimate as they exhibit considerable variability in space and time that depend on the distributions of clouds, ozone (O3), water vapor (H2O), air temperature (Ta), and surface temperature (Ts). Benchmarking present-day fluxes and quantifying the relative influence of their drivers is the first step for estimating climate feedbacks from ozone radiative forcing and predicting radiative forcing evolution. To that end, we constructed observational instantaneous radiative kernels (IRKs) under clear-sky conditions, representing the sensitivities of the TOA flux in the 9.6 µm ozone band to the vertical distribution of geophysical variables, including O3, H2O, Ta, and Ts based upon the Aura Tropospheric Emission Spectrometer (TES) measurements. Applying these kernels to present-day simulations from the Chemistry-Climate Model Initiative (CCMI) project as compared to a 2006 reanalysis assimilating satellite observations, we show that the models have large differences in TOA flux, attributable to different geophysical variables. In particular, model simulations continue to diverge from observations in the tropics, as reported in previous studies of the Atmospheric Chemistry Climate Model Intercomparison Project (ACCMIP) simulations. The principal culprits are tropical middle and upper tropospheric ozone followed by tropical lower tropospheric H2O. Five models out of the eight studied here have TOA flux biases exceeding 100 mW m−2 attributable to tropospheric ozone bias. Another set of five models have flux biases over 50 mW m−2 due to H2O. On the other hand, Ta radiative bias is negligible in all models (no more than 30 mW m−2). We found that the atmospheric component (AM3) of the Geophysical Fluid Dynamics Laboratory (GFDL) general circulation model and Canadian Middle Atmosphere Model (CMAM) have the lowest TOA flux biases globally but are a result of cancellation of opposite biases due to different processes. Overall, the multi-model ensemble mean bias is -133±98 mW m−2, indicating that they are too atmospherically opaque due to trapping too much radiation in the atmosphere by overestimated tropical tropospheric O3 and H2O. Having too much O3 and H2O in the troposphere would have different impacts on the sensitivity of TOA flux to O3 and these competing effects add more uncertainties on the ozone radiative forcing. We find that the inter-model TOA outgoing longwave radiation (OLR) difference is well anti-correlated with their ozone band flux bias. This suggests that there is significant radiative compensation in the calculation of model outgoing longwave radiation.


2018 ◽  
Vol 14 (6) ◽  
pp. 901-922 ◽  
Author(s):  
Mari F. Jensen ◽  
Aleksi Nummelin ◽  
Søren B. Nielsen ◽  
Henrik Sadatzki ◽  
Evangeline Sessford ◽  
...  

Abstract. Here, we establish a spatiotemporal evolution of the sea-surface temperatures in the North Atlantic over Dansgaard–Oeschger (DO) events 5–8 (approximately 30–40 kyr) using the proxy surrogate reconstruction method. Proxy data suggest a large variability in North Atlantic sea-surface temperatures during the DO events of the last glacial period. However, proxy data availability is limited and cannot provide a full spatial picture of the oceanic changes. Therefore, we combine fully coupled, general circulation model simulations with planktic foraminifera based sea-surface temperature reconstructions to obtain a broader spatial picture of the ocean state during DO events 5–8. The resulting spatial sea-surface temperature patterns agree over a number of different general circulation models and simulations. We find that sea-surface temperature variability over the DO events is characterized by colder conditions in the subpolar North Atlantic during stadials than during interstadials, and the variability is linked to changes in the Atlantic Meridional Overturning circulation and in the sea-ice cover. Forced simulations are needed to capture the strength of the temperature variability and to reconstruct the variability in other climatic records not directly linked to the sea-surface temperature reconstructions. This is the first time the proxy surrogate reconstruction method has been applied to oceanic variability during MIS3. Our results remain robust, even when age uncertainties of proxy data, the number of available temperature reconstructions, and different climate models are considered. However, we also highlight shortcomings of the methodology that should be addressed in future implementations.


2021 ◽  
Author(s):  
Timothy Lam ◽  
Marlene Kretschmer ◽  
Samantha Adams ◽  
Alberto Arribas ◽  
Rachel Prudden ◽  
...  

<p>Teleconnections are sources of predictability for regional weather and climate, which can be represented by causal relationships between climate features in physically separated regions. In this study, teleconnections of low rainfall anomalies in Indonesian Borneo are analysed and quantified using causal inference theory and causal networks. Causal hypotheses are first developed based on climate model experiments in literature and then justified by means of partial regression analysis between NCEP reanalysis sea surface temperatures and climate indices (drivers) and rainfall data in Indonesian Borneo from various sources (target variable). We find that, as previous studies have highlighted, El Niño Southern Oscillation (ENSO) has a profound effect on rainfall in Indonesia Borneo, with positive Niño 3.4 index serving as a direct driver of low rainfall, also partially through reduced sea surface temperatures (SSTs) over Indonesian waters. On the other hand, while Indian Ocean Dipole (IOD) influences Indonesian Borneo rainfall through SSTs over the same area as a thermodynamic effect, its remaining effect has shifted at multidecadal timescale, opening the rooms for further research. This work informs the potential of a systematic causal approach to statistical inference as a powerful tool to verify and explore atmospheric teleconnections and enables seasonal forecasting to strengthen prevention and control of drought and fire multihazards over peatlands in the study region.</p><p>Keywords: Tropical teleconnections, Causal inference, Climate variability, Drought, Indonesia</p>


tamh tm iedor sphere -1 el 9a8 ti 0vse , lyc li s m im a p te le models. Much more detailed than in the Australian region (Simpson and Downey 1975; run. Rather they are models than simp allysofomuuscehdm ro ourte in eelxypesn in si cvee th to e V ha osicbe ee anndfoH rc uendt 198 recasting El Nino behav­ tures for the p w er iitohd4o ). bsT1eh rv e BMRC climate model iour (e.g., sea surface temperatures in the east simulated by the model ha 9s49e -d 9 1 se , aasnud rf ac th eet em ra p in efraal ­ lfeoqrueactaosrti al r Pacific), they could, in theory, be used to ob been compared with the coupling o ai fnftahleloacnedantetmoptehrea tu artemoosvpehre re la nidn . th Tehseew te asse rv ru end ra fiinvfea ll t i ( m Fr eesd , er w ik istehne th teal. s1a9m9e5 ). seTahesm ur o fa dceelmmo od deellss , ( hPoowweevrere , tis less than perfect. Improved ocean ph m er p ic e ra ctoun re d s it io bnust . s T li h ghtly different starting atmos­ these coupled mode alls . . 1995) are being developed for ialg lu rseterm ate esnttw he it h ‘ noobisseer ’ veind iffe ed rtahier ence betw nfa m ll, o w de e l . neTeoenge th t e ed to av mru uns O era cghep se aarsto ne pro onfalthperebd le ic m ti own it ihstthheeduisfef ic oufltcy oupled models in all five runs as an ‘ens coupled models has in sitmhue la attim ng osrp ai hnefrailclA of u st p ra rleicainpp it raetc io ip n i tat sihoon, w em abtls le’. eoam st e The en o ve srkin ll sem o rt ihne bl sei ave rn Amuusl rag t a ra ti lnegsgoennte he ia. (Ni ra l sp su a c ti caelsssca in le ssiimmuploartt in an gtaftomrousspeh rs e , ridcesvpairtieab th il e it iyr Fur T th h e es resoau tm th o , stphheem ri odels are less successful. sea cshuo rf l a ls ce1t9e9m6p ) e . ra M tu ordeealneoxmpaelriiemsehnatvsewailtohngspheicsitfo ie ry djtohb er e o fo f re si m pr uolbaa ti bnlgyc th cemSoOdIel ( eFx ig pe urrieme3n .3 ts ) . do ThaegSoO od I an be predicted without the need

Droughts ◽  
2016 ◽  
pp. 77-77

2019 ◽  
Vol 13 (11) ◽  
pp. 3023-3043
Author(s):  
Julien Beaumet ◽  
Michel Déqué ◽  
Gerhard Krinner ◽  
Cécile Agosta ◽  
Antoinette Alias

Abstract. Owing to increase in snowfall, the Antarctic Ice Sheet surface mass balance is expected to increase by the end of the current century. Assuming no associated response of ice dynamics, this will be a negative contribution to sea-level rise. However, the assessment of these changes using dynamical downscaling of coupled climate model projections still bears considerable uncertainties due to poorly represented high-southern-latitude atmospheric circulation and sea surface conditions (SSCs), that is sea surface temperature and sea ice concentration. This study evaluates the Antarctic surface climate simulated using a global high-resolution atmospheric model and assesses the effects on the simulated Antarctic surface climate of two different SSC data sets obtained from two coupled climate model projections. The two coupled models from which SSCs are taken, MIROC-ESM and NorESM1-M, simulate future Antarctic sea ice trends at the opposite ends of the CMIP5 RCP8.5 projection range. The atmospheric model ARPEGE is used with a stretched grid configuration in order to achieve an average horizontal resolution of 35 km over Antarctica. Over the 1981–2010 period, ARPEGE is driven by the SSCs from MIROC-ESM, NorESM1-M and CMIP5 historical runs and by observed SSCs. These three simulations are evaluated against the ERA-Interim reanalyses for atmospheric general circulation as well as the MAR regional climate model and in situ observations for surface climate. For the late 21st century, SSCs from the same coupled climate models forced by the RCP8.5 emission scenario are used both directly and bias-corrected with an anomaly method which consists in adding the future climate anomaly from coupled model projections to the observed SSCs with taking into account the quantile distribution of these anomalies. We evaluate the effects of driving the atmospheric model by the bias-corrected instead of the original SSCs. For the simulation using SSCs from NorESM1-M, no significantly different climate change signals over Antarctica as a whole are found when bias-corrected SSCs are used. For the simulation driven by MIROC-ESM SSCs, a significant additional increase in precipitation and in winter temperatures for the Antarctic Ice Sheet is obtained when using bias-corrected SSCs. For the range of Antarctic warming found (+3 to +4 K), we confirm that snowfall increase will largely outweigh increases in melt and rainfall. Using the end members of sea ice trends from the CMIP5 RCP8.5 projections, the difference in warming obtained (∼ 1 K) is much smaller than the spread of the CMIP5 Antarctic warming projections. This confirms that the errors in representing the Southern Hemisphere atmospheric circulation in climate models are also determinant for the diversity of their projected late 21st century Antarctic climate change.


2013 ◽  
Vol 13 (8) ◽  
pp. 4057-4072 ◽  
Author(s):  
K. W. Bowman ◽  
D. T. Shindell ◽  
H. M. Worden ◽  
J.F. Lamarque ◽  
P. J. Young ◽  
...  

Abstract. We use simultaneous observations of tropospheric ozone and outgoing longwave radiation (OLR) sensitivity to tropospheric ozone from the Tropospheric Emission Spectrometer (TES) to evaluate model tropospheric ozone and its effect on OLR simulated by a suite of chemistry-climate models that participated in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The ensemble mean of ACCMIP models show a persistent but modest tropospheric ozone low bias (5–20 ppb) in the Southern Hemisphere (SH) and modest high bias (5–10 ppb) in the Northern Hemisphere (NH) relative to TES ozone for 2005–2010. These ozone biases have a significant impact on the OLR. Using TES instantaneous radiative kernels (IRK), we show that the ACCMIP ensemble mean tropospheric ozone low bias leads up to 120 mW m−2 OLR high bias locally but zonally compensating errors reduce the global OLR high bias to 39 ± 41 m Wm−2 relative to TES data. We show that there is a correlation (R2 = 0.59) between the magnitude of the ACCMIP OLR bias and the deviation of the ACCMIP preindustrial to present day (1750–2010) ozone radiative forcing (RF) from the ensemble ozone RF mean. However, this correlation is driven primarily by models whose absolute OLR bias from tropospheric ozone exceeds 100 m Wm−2. Removing these models leads to a mean ozone radiative forcing of 394 ± 42 m Wm−2. The mean is about the same and the standard deviation is about 30% lower than an ensemble ozone RF of 384 ± 60 m Wm−2 derived from 14 of the 16 ACCMIP models reported in a companion ACCMIP study. These results point towards a profitable direction of combining satellite observations and chemistry-climate model simulations to reduce uncertainty in ozone radiative forcing.


2020 ◽  
Author(s):  
Traute Crueger ◽  
Hauke Schmidt ◽  
Bjorn Stevens

<p>Under present day conditions the observations approximately show a hemispheric symmetry of the top of atmosphere (TOA)  short wave (SW) reflection despite the asymmetry of surface SW reflection. This has been confirmed by climate models. With models in an aqua planet setup, Voigt et al. (2014) found that tropical clouds largely compensate surface SW hemispheric asymmetries, however to a different degree in dependence on the convection scheme.</p><p>In this study, we question, whether there is also a hemispheric symmetry of TOA SW radiation under changed atmospheric radiation conditions. For that reason, we analyze experiments performed with a set of fully coupled general circulation models. The experiments were performed with either a) hemispheric asymmetric incoming radiation, b) increased atmospheric CO2 concentrations, c) increased atmospheric CO2 concentrations combined with increased stratospheric aerosol burden, or d) increased atmospheric CO2 concentration in conjunction with increased ocean albedo.</p><p>We show that generally, a hemispheric symmetry of TOA SW radiation does not occur. Overall, among the group of models, the hemispheric TOA SW radiation budgets are roughly similar for the distinct experiments, although the models utilyze different convection schemes.  We discuss the role of surface and atmospheric feedbacks in the different experiments, especially of tropical and extratropical clouds.</p><p>Reference:<br>Voigt, A., B. Stevens, J. Bader, and T. Mauritsen, 2014: Compensation of Hemispheric Albedo Asymmetries by Shifts of the ITCZ and Tropical Clouds. J. Climate, 27, 1029–1045, https://doi.org/10.1175/JCLI-D-13-00205.1.</p>


Sign in / Sign up

Export Citation Format

Share Document