scholarly journals On the Correspondence between Short- and Long-Time-Scale Systematic Errors in CAM4/CAM5 for the Year of Tropical Convection

2012 ◽  
Vol 25 (22) ◽  
pp. 7937-7955 ◽  
Author(s):  
Shaocheng Xie ◽  
Hsi-Yen Ma ◽  
James S. Boyle ◽  
Stephen A. Klein ◽  
Yuying Zhang

Abstract The correspondence between short- and long-time-scale systematic errors in the Community Atmospheric Model, version 4 (CAM4) and version 5 (CAM5), is systematically examined. The analysis is based on the annual-mean data constructed from long-term “free running” simulations and short-range hindcasts. The hindcasts are initialized every day with the ECMWF analysis for the Year(s) of Tropical Convection. It has been found that most systematic errors, particularly those associated with moist processes, are apparent in day 2 hindcasts. These errors steadily grow with the hindcast lead time and typically saturate after five days with amplitudes comparable to the climate errors. Examples include the excessive precipitation in much of the tropics and the overestimate of net shortwave absorbed radiation in the stratocumulus cloud decks over the eastern subtropical oceans and the Southern Ocean at about 60°S. This suggests that these errors are likely the result of model parameterization errors as the large-scale flow remains close to observed in the first few days of the hindcasts. In contrast, other climate errors are present in the hindcasts, but with amplitudes that are significantly smaller than and do not approach their climate errors during the 6-day hindcasts. These include the cold biases in the lower stratosphere, the unrealistic double–intertropical convergence zone pattern in the simulated precipitation, and an annular mode bias in extratropical sea level pressure. This indicates that these biases could be related to slower processes such as radiative and chemical processes, which are important in the lower stratosphere, or the result of poor interactions of the parameterized physics with the large-scale flow.

2013 ◽  
Vol 13 (12) ◽  
pp. 31891-31932 ◽  
Author(s):  
R. Paoli ◽  
O. Thouron ◽  
J. Escobar ◽  
J. Picot ◽  
D. Cariolle

Abstract. Large-eddy simulations of sub-kilometer-scale turbulence in the upper troposphere lower stratosphere (UTLS) are carried out and analyzed using the mesoscale atmospheric model Méso-NH. Different levels of turbulence are generated using a large-scale stochastic forcing technique that was especially devised to treat atmospheric stratified flows. The study focuses on the analysis of turbulence statistics, including mean quantities and energy spectra, as well as on a detailed description of flow topology. The impact of resolution is also discussed by decreasing the grid spacing to 2 m and increasing the number of grid points to 8×109. Because of atmospheric stratification, turbulence is substantially anisotropic, and large elongated structures form in the horizontal directions, in accordance with theoretical analysis and spectral direct numerical simulations of stably stratified flows. It is also found that the inertial range of horizontal kinetic energy spectrum, generally observed at scales larger than a few kilometers, is prolonged into the sub-kilometric range, down to the Ozmidov scales that obey isotropic Kolmorogov turbulence. The results are in line with observational analysis based on in situ measurements from existing campaigns.


2015 ◽  
Vol 28 (12) ◽  
pp. 4863-4876 ◽  
Author(s):  
M. Soner Yorgun ◽  
Richard B. Rood

Abstract An object-based evaluation method is applied to the simulated orographic precipitation for the idealized experimental setups using the National Center of Atmospheric Research (NCAR) Community Atmosphere Model (CAM) with the finite volume (FV) and Eulerian spectral transform dynamical cores with varying resolutions. The method consists of the application of k-means cluster analysis to the precipitation features to determine their spatial boundaries and the calculation of the semivariograms (SVs) for the isolated features for evaluation. The quantitative analysis revealed differences between the simulated precipitation by the FV and Eulerian spectral transform models that are not visually apparent. The simulated large-scale precipitation features of the idealized test cases provide analogs to orographic precipitation features observed in simulations of Atmospheric Model Intercomparison Project (AMIP) models. The spatial boundaries of these features (determined by k-means clustering) for Eulerian spectral T85 and T170 resolutions revealed the level of merger between the two large-scale features simulated because of each peak in the double mountain idealized setup. Both FV 1° and 0.5° resolutions were able to simulate the dryer region between the two mountains. The SVs of precipitation for the single and double mountain setups show close agreement between FV 1°, FV 0.5°, and Eulerian spectral T170 resolutions; however, Eulerian spectral T85 simulated the precipitation in lower intensity, indicating the qualitative difference in resolutions previously determined to be equivalent. Such close agreement was not observed in the more realistic idealized setup.


2016 ◽  
Vol 144 (7) ◽  
pp. 2739-2766 ◽  
Author(s):  
Michael A. Herrera ◽  
Istvan Szunyogh ◽  
Joseph Tribbia

Abstract This paper employs local linear, spatial spectral, and Lorenz curve–based diagnostics to investigate the dynamics of uncertainty in global numerical weather forecasts in the NH extratropics. The diagnostics are applied to ensembles in the THORPEX Interactive Grand Global Ensemble (TIGGE). The initial growth of uncertainty is found to be the fastest at the synoptic scales (zonal wavenumbers 7–9) most sensitive to baroclinic instability. At later forecast times, the saturation of uncertainties at the synoptic scales and the longer sustainable growth of uncertainty at the large scales lead to a gradual shift of the wavenumber of the dominant uncertainty toward zonal wavenumber 5. At the subsynoptic scales, errors saturate as predicted by Lorenz’s classic theory. While the ensembles capture the general characteristics of the uncertainty dynamics efficiently, there are locations where the predicted magnitude and structure of uncertainty have considerable time-mean errors. In addition, the magnitude of systematic errors in the prediction of the uncertainty increases with increasing forecast time. These growing systematic errors are dominated by errors in the prediction of low-frequency changes in the large-scale flow.


2006 ◽  
Vol 6 (5) ◽  
pp. 10217-10246
Author(s):  
H.-F. Graf ◽  
J. Yang

Abstract. A convective cloud field model (CCFM) is substituted for a standard mass flux parameterisation of convective clouds in a limited area atmospheric model (REMO) and is tested for a whole annual cycle (July 1997 to June 1998) over the Maritime Continent. REMO with CCFM is run in 0.5-degree resolution and the model at the boundaries is forced 6-hourly by ECMWF reanalysis data. Simulated precipitation from runs with the standard convection parameterisation and with CCFM is compared against two sets of observations. The use of CCFM clearly improves the simulated precipitation patterns and total rainfall over the whole model domain. The distribution between large-scale and convective precipitation becomes more realistic. CCFM shows to be a useful concept to describe convective cloud spectra in atmospheric models, although there are still similar problems with occasionally extreme precipitation as in the original set-up of REMO.


2020 ◽  
Vol 77 (1) ◽  
pp. 379-403 ◽  
Author(s):  
Yi-Hung Kuo ◽  
J. David Neelin ◽  
Chih-Chieh Chen ◽  
Wei-Ting Chen ◽  
Leo J. Donner ◽  
...  

Abstract To assess deep convective parameterizations in a variety of GCMs and examine the fast-time-scale convective transition, a set of statistics characterizing the pickup of precipitation as a function of column water vapor (CWV), PDFs and joint PDFs of CWV and precipitation, and the dependence of the moisture–precipitation relation on tropospheric temperature is evaluated using the hourly output of two versions of the GFDL Atmospheric Model, version 4 (AM4), NCAR CAM5 and superparameterized CAM (SPCAM). The 6-hourly output from the MJO Task Force (MJOTF)/GEWEX Atmospheric System Study (GASS) project is also analyzed. Contrasting statistics produced from individual models that primarily differ in representations of moist convection suggest that convective transition statistics can substantially distinguish differences in convective representation and its interaction with the large-scale flow, while models that differ only in spatial–temporal resolution, microphysics, or ocean–atmosphere coupling result in similar statistics. Most of the models simulate some version of the observed sharp increase in precipitation as CWV exceeds a critical value, as well as that convective onset occurs at higher CWV but at lower column RH as temperature increases. While some models quantitatively capture these observed features and associated probability distributions, considerable intermodel spread and departures from observations in various aspects of the precipitation–CWV relationship are noted. For instance, in many of the models, the transition from the low-CWV, nonprecipitating regime to the moist regime for CWV around and above critical is less abrupt than in observations. Additionally, some models overproduce drizzle at low CWV, and some require CWV higher than observed for strong precipitation. For many of the models, it is particularly challenging to simulate the probability distributions of CWV at high temperature.


2012 ◽  
Vol 140 (9) ◽  
pp. 3090-3105 ◽  
Author(s):  
William C. Skamarock ◽  
Joseph B. Klemp ◽  
Michael G. Duda ◽  
Laura D. Fowler ◽  
Sang-Hun Park ◽  
...  

Abstract The formulation of a fully compressible nonhydrostatic atmospheric model called the Model for Prediction Across Scales–Atmosphere (MPAS-A) is described. The solver is discretized using centroidal Voronoi meshes and a C-grid staggering of the prognostic variables, and it incorporates a split-explicit time-integration technique used in many existing nonhydrostatic meso- and cloud-scale models. MPAS can be applied to the globe, over limited areas of the globe, and on Cartesian planes. The Voronoi meshes are unstructured grids that permit variable horizontal resolution. These meshes allow for applications beyond uniform-resolution NWP and climate prediction, in particular allowing embedded high-resolution regions to be used for regional NWP and regional climate applications. The rationales for aspects of this formulation are discussed, and results from tests for nonhydrostatic flows on Cartesian planes and for large-scale flow on the sphere are presented. The results indicate that the solver is as accurate as existing nonhydrostatic solvers for nonhydrostatic-scale flows, and has accuracy comparable to existing global models using icosahedral (hexagonal) meshes for large-scale flows in idealized tests. Preliminary full-physics forecast results indicate that the solver formulation is robust and that the variable-resolution-mesh solutions are well resolved and exhibit no obvious problems in the mesh-transition zones.


Author(s):  
Kai-Wei Chang ◽  
Kenneth P. Bowman ◽  
Leong Wai Siu ◽  
Anita D. Rapp

AbstractIn the upper troposphere and lower stratosphere (UTLS), large-scale anticyclones associated with monsoons play major roles in tropospheric and stratospheric transport and mixing. To understand the forcing of the North American Monsoon Anticyclone (NAMA), this study examines the connection between precipitation over the tropics and subtropics of the North American longitude sector and the variability of the troposphere and lower stratosphere. Using ERA5 reanalysis and outgoing longwave radiation (OLR) data from 1979 to 2019, we assess the relationship at the intraseasonal time scale using pentad-mean time series. We show that OLR anomalies are correlated with circulation anomalies northwest and northeast of the region of precipitation. Decreased OLR (increased precipitation) corresponds to increased geopotential heights and anticyclonic circulation anomalies in the 300 – 100 hPa layer and an opposite response in the lower tropospheric 850 – 600 hPa layer. The results are consistent with the established theory of the Rossby wave response to latent heating. The increase in height, which is strongest near 150 hPa, indicates that increased precipitation is associated with a strengthened NAMA. UTLS temperatures also have significant correlations with OLR, with cold (warm) anomalies occurring above (below) the core of the anticyclonic anomaly consistent with large-scale balance. The vertical structure of geopotential and temperature anomalies is compared to simulations using an idealized general circulation model, which shows that such a vertical structure is a consistent response to diabatic heating. Correlations at the interannual time scale resemble those at the intraseasonal time scale, demonstrating that precipitation is related to the NAMA at both time scales.


2018 ◽  
Vol 75 (9) ◽  
pp. 3285-3302 ◽  
Author(s):  
Maximo Q. Menchaca ◽  
Dale R. Durran

Abstract The feedback of mountain waves and low-level blocking on an idealized baroclinically unstable wave passing over an isolated ridge is examined through numerical simulation. Theoretical analysis implies that the volume-integrated perturbation momentum budget is dominated by mean-flow deceleration, the divergence of vertical fluxes of horizontal momentum, and the Coriolis force acting on the perturbation ageostrophic wind. These do indeed appear as the dominant balances in numerically computed budgets averaged over layers containing 1) wave breaking in the lower stratosphere, 2) flow blocking with wave breaking near the surface, and 3) a region of pronounced horizontally averaged mean-flow deceleration in the upper troposphere where there is no wave breaking. The local impact of wave breaking on the jet in the lower stratosphere is dramatic, with winds in the jet core reduced by almost 50% relative to the no-mountain case. Although it is the layer with the strongest average deceleration, the local patches of decelerated flow are weakest in the upper troposphere. The cross-mountain pressure drag over a 2-km-high ridge greatly exceeds the vertical momentum flux at mountain-top level because of low-level wave breaking, blocking, and lateral flow diversion. These pressure drags and the low-level momentum fluxes are significantly different from corresponding values computed for simulations with steady forcing matching the instantaneous conditions over the mountain in the evolving large-scale flow.


Sign in / Sign up

Export Citation Format

Share Document