Seasonal Climate Variability and Change in the Pacific Northwest of the United States

2014 ◽  
Vol 27 (5) ◽  
pp. 2125-2142 ◽  
Author(s):  
John T. Abatzoglou ◽  
David E. Rupp ◽  
Philip W. Mote

Abstract Observed changes in climate of the U.S. Pacific Northwest since the early twentieth century were examined using four different datasets. Annual mean temperature increased by approximately 0.6°–0.8°C from 1901 to 2012, with corroborating indicators including a lengthened freeze-free season, increased temperature of the coldest night of the year, and increased growing-season potential evapotranspiration. Seasonal temperature trends over shorter time scales (<50 yr) were variable. Despite increased warming rates in most seasons over the last half century, nonsignificant cooling was observed during spring from 1980 to 2012. Observations show a long-term increase in spring precipitation; however, decreased summer and autumn precipitation and increased potential evapotranspiration have resulted in larger climatic water deficits over the past four decades. A bootstrapped multiple linear regression model was used to better resolve the temporal heterogeneity of seasonal temperature and precipitation trends and to apportion trends to internal climate variability, solar variability, volcanic aerosols, and anthropogenic forcing. The El Niño–Southern Oscillation and the Pacific–North American pattern were the primary modulators of seasonal temperature trends on multidecadal time scales: solar and volcanic forcing were nonsignificant predictors and contributed weakly to observed trends. Anthropogenic forcing was a significant predictor of, and the leading contributor to, long-term warming; natural factors alone fail to explain the observed warming. Conversely, poor model skill for seasonal precipitation suggests that other factors need to be considered to understand the sources of seasonal precipitation trends.

Author(s):  
David Greenland ◽  
Frederick Bierlmaier

The H. J. Andrews (AND) Long-Term Ecological Research (LTER) site represents the temperate coniferous forest of the Pacific Northwest (PNW) of the United States. The general climate of the area is highly dynamic, displaying variability at a variety of timescales ranging from daily to millennial. AND, and its surrounding region, is therefore an ideal site for examining some of the guiding questions of climate variability and ecosystem response addressed by this volume (see chapter 1). A legacy of more than 50 years of research at the site and its surrounding area ensures that several of the questions can be investigated in some depth. Here we organize our discussion within a timescale framework that is consistent with the structure of this volume. Thus, following a brief description of the general climate of the site, we discuss climate variability and ecosystem response at the daily, multidecadal, and century to millennial scale. This discussion for the PNW is supplemented in chapters 6 and 13 by a consideration of the quasi-quintennial scale and an additional ecosystem response at the decadal scale. Having described some of the climate variability and ecosystem response at the selected timescales, we will consider what this information can tell us regarding some of the guiding questions of this book. The questions that we specifically address include the following: What preexisting conditions affect the impact of the climatic event or episode? Is the climatic effect on the ecosystems direct or cascading? Does the system return to its original state? We also consider potential future climate change and its possible ecosystem effects. Located at latitude 44.2º N and longitude 122.2º W, the Andrews Forest is situated in the western Cascade Range of Oregon in the 6400-ha (15,800-acre) drainage basin of Lookout Creek, a tributary of the Blue River and the McKenzie River (figure 19.1). Elevation ranges from 410 m (1350 feet) to 1630 m (5340 feet). Broadly representative of the rugged mountainous landscape of the Pacific Northwest (PNW), the Andrews Forest contains excellent examples of the region’s conifer forests and associated wildlife and stream ecosystems. Lower elevation forests are dominated by Douglas-fir (Pseudotsuga menziesii), western hemlock (Tsuga heterophylla), and western red cedar (Thuja plicata).


2014 ◽  
Vol 21 (2) ◽  
pp. 594-604 ◽  
Author(s):  
Bryan A. Black ◽  
Jason B. Dunham ◽  
Brett W. Blundon ◽  
Jayne Brim-Box ◽  
Alan J. Tepley

2017 ◽  
Vol 8 (2) ◽  
pp. 640-647 ◽  
Author(s):  
Jeffrey C. Jolley ◽  
Christina T. Uh ◽  
Gregory S. Silver ◽  
Timothy A. Whitesel

Abstract Native lamprey populations are declining worldwide. In the Pacific Northwest focus on conservation and management of these ecologically and culturally important species has increased. Concern has emerged regarding the effects of sampling and handling of lamprey, with little to no attention given to the larval lifestage. We monitored the survival of larval Pacific Lamprey Entosphenus tridentatus and Lampetra spp. after backpack electrofishing, deepwater electrofishing and suction-pumping, anesthesia, and handling. We performed survival trials on wild-caught lamprey (n = 15 larvae in each trial) collected from the Clackamas River drainage in Oregon, USA, coupled with control group trials from lamprey sourced from a hatchery (n = 10 larvae). Short-term (96 h) survival was >98% with only one observed mortality. Delayed mortality (1 wk) was observed for four individuals that had fungus; two of those were positive for the bacteria Aeromonas hyrdrophila. We recorded blood hematocrit as a secondary measure of stress. The baseline, nonstressed larvae hematocrit levels did not differ from those of fish that had undergone stress through electrofishing, suction-pumping, and handling without anesthesia. Electrofishing, suction-pumping, and anesthesia showed no short-term negative effects on larval lamprey although potential long-term effects remain unstudied. These techniques appear to provide efficient and relatively safe methods for collecting and surveying larval lamprey.


2003 ◽  
Vol 95 (4) ◽  
pp. 828-835 ◽  
Author(s):  
K. M. Camara ◽  
W. A. Payne ◽  
P. E. Rasmussen

2007 ◽  
Vol 22 (1) ◽  
pp. 36-41 ◽  
Author(s):  
Kevin W. Zobrist ◽  
Bruce R. Lippke

Abstract Riparian management is an important consideration for sustainable wood production in the Pacific Northwest. Western Washington and Oregon have similar riparian management issues but different regulatory prescriptions. Application of these prescriptions to a sample of 10 small private ownerships illustrate some of the economic differences of each state's approach. Economic costs tend to be higher in Washington but can be significant in both states. Lower cost strategies through alternate plans may be important for protecting riparian habitat while ensuring the long-term economic viability of forestry in the region.


2020 ◽  
Author(s):  
Ralph Trancoso ◽  
Jozef Syktus

<p>Changing precipitation patterns due to climate change is a critical concern affecting society and the environment. Projected changes in global seasonal precipitation are largely heterogeneous in space, time, magnitude and direction. Therefore, reconciling projected future precipitation is pivotal for climate change science and adaptation and mitigation schemes.</p><p>This research contributes to disentangle future precipitation uncertainty globally by exploring long-term trends in projected seasonal precipitation of 33 CMIP5 and 16 CMIP6 models for the period 1980-2100. We first estimate trend slopes and significance in long-term future seasonal precipitation using the Sen-Slope and Mann-Kendall tests and constrain trends with at least 10% of cumulative changes over the 120-year period. Then, we assess convergence in the direction of trends across seasons. We highlight the world’s jurisdictions with consistent drying and wetting patterns as well as the seasonal dominance of precipitation trends.</p><p>A consistent drying pattern – where at least 78% of GCMs have decreasing precipitation trends – was observed in Central America, South and North Africa, South Europe, Southern USA and Southern South America. Unlike, a strong convergence in projected long-term wetness – where at least 78% of GCMs have increasing precipitation trends – was observed across most of Asia, Central Africa, Northern Europe, Canada, Northern US and South Brazil and surrounds.</p><p>Results show convergence in direction of seasonal precipitation trends revealing the world’s jurisdictions more likely to experience changes in future precipitation patterns. The approach is promisor to summarize trends in seasonal time-series from multiple GCMs and better constrain wetting and drying precipitation patterns. This study provides meaningful insights to inform water resource management and climate change adaptation globally.</p>


2019 ◽  
Vol 118 (1) ◽  
pp. 1-13 ◽  
Author(s):  
J Bradley St. Clair ◽  
Glenn T Howe ◽  
Jennifer G Kling

Abstract The 1912 Douglas-Fir Heredity Study is one of the first studies undertaken by the US Forest Service, and one of the first forest genetics studies in North America. The study considers provenance variation of 120 parent trees from 13 seed sources planted at five test sites in the Pacific Northwest. The unique, long-term nature of the study makes it valuable to revisit and consider its biological and historical significance. This analysis considers how far climatically Douglas-fir populations may be moved without incurring unacceptable declines in growth and survival. Results indicate that Douglas-fir seed sources may be moved at least 2° C cooler or warmer and still retain good long-term survival and productivity. However, projected future climate change beyond 2° C may lead to lower survival and productivity. One option to address these concerns is assisted migration; however, if seed sources are moved beyond 2–3° C to a cooler climate in anticipation of warming, or from a more continental to a maritime climate, we are likely to see increased mortality and associated losses in productivity in the near-term. Lessons from this study include: (1) pay attention to good experimental design; we were able to overcome limitations from the design by using new statistical approaches; (2) maladaptation may take time to develop; poorer survival was not evident until more than two decades after planting; and (3) long-term studies may have value for addressing new, unforeseen issues in the future.


2017 ◽  
Vol 145 (11) ◽  
pp. 4481-4499 ◽  
Author(s):  
Gina Medici ◽  
Kenneth L. Cummins ◽  
Daniel J. Cecil ◽  
William J. Koshak ◽  
Scott D. Rudlosky

This work addresses the long-term relative occurrence of cloud-to-ground (CG) and intracloud (IC; no attachment to ground) flashes for the contiguous United States (CONUS). It expands upon an earlier analysis by Boccippio et al. who employed 4-yr datasets provided by the U.S. National Lightning Detection Network (NLDN) and the Optical Transient Detector (OTD). Today, the duration of the NLDN historical dataset has more than tripled, and OTD data can be supplemented with data from the Lightning Imaging Sensor (LIS). This work is timely, given the launch of GOES-16, which includes the world’s first geostationary lightning mapper that will observe total lightning (IC and CG) over the Americas and adjacent ocean regions. Findings support earlier results indicating factor-of-10 variations in the IC:CG ratio throughout CONUS, with climatological IC fraction varying between 0.3 and greater than 0.9. The largest values are seen in the Pacific Northwest, central California, and where Colorado borders Kansas and Nebraska. An uncertainty analysis indicates that the large values in the northwest and central California are likely not due to measurement uncertainty. The high IC:CG ratio (>4) throughout much of Texas reported by Boccippio et al. is not supported by this longer-term climatology. There is no clear evidence of differences in IC fraction between land and coastal ocean. Lightning characteristics in six selected large regions show a consistent positive relationship between IC fraction and the percent of positive CG flashes, irrespective of lightning incidence (flash density), dominant season, or diurnal maximum period.


Sign in / Sign up

Export Citation Format

Share Document