scholarly journals The Regional Climate Impact of a Realistic Future Deforestation Scenario in the Congo Basin

2014 ◽  
Vol 27 (7) ◽  
pp. 2714-2734 ◽  
Author(s):  
Tom Akkermans ◽  
Wim Thiery ◽  
Nicole P. M. Van Lipzig

Abstract The demand for agricultural land in the Congo basin is expected to yield substantial deforestation over the coming decades. Although several studies exist on the climatological impact of deforestation in the Congo basin, deforestation scenarios that are implemented in climate models are generally crude. This study aims to refine current impact assessments by removing the primary forest according to an existing spatially explicit scenario, and replacing it by successional vegetation typically observed for the Congo basin. This is done within the Consortium for Small-Scale Modeling (COSMO) model in climate mode (COSMO-CLM), a regional climate model at 25-km grid spacing coupled to a state-of-the-art soil–vegetation–atmosphere transfer scheme (Community Land Model). An evaluation of the model shows good performance compared to in situ and satellite observations. Model integrations indicate that the deforestation, expected for the middle of the twenty-first century, induces a warming of about 0.7°C. This is about half the greenhouse gas–induced surface warming in this region, given an intermediate emission scenario (A1B) with COSMO-CLM driven by the ECHAM5 global climate model. This shows the necessity of taking into account deforestation to obtain realistic future climate projections. The deforestation-induced warming can be attributed to reduced evaporation, but this effect is mitigated by increased albedo and increased sensible heat loss to the atmosphere. Precipitation is also affected: as a consequence of surface warming resulting from deforestation, a regional heat low develops over the rain forest region. Resulting low-level convergence causes a redistribution of moisture in the boundary layer and a stabilization of the atmospheric column, thereby reducing convection intensity and hence precipitation by 5%–10% in the region of the heat low.

2019 ◽  
Author(s):  
Muhammad Shafqat Mehboob ◽  
Yeonjoo Kim ◽  
Jaehyeong Lee ◽  
Myoung-Jin Um ◽  
Amir Erfanian ◽  
...  

Abstract. This study investigates the projected effect of vegetation feedback on drought conditions in West Africa using a regional climate model coupled to the National Center for Atmospheric Research Community Land Model, the carbon-nitrogen (CN) module, and the dynamic vegetation (DV) module (RegCM-CLM-CN-DV). The role of vegetation feedback is examined based on simulations with and without the DV module. Simulations from four different global climate models are used as lateral boundary conditions (LBCs) for historical and future periods (i.e., historical: 1981–2000; future: 2081–2100). With utilizing the Standardized Precipitation Evapotranspiration Index (SPEI), we quantify the duration, frequency, and severity of droughts over the focal regions of the Sahel, the Gulf of Guinea, and the Congo Basin. With the vegetation dynamics being considered, future droughts become more prolonged and enhanced over the Sahel, whereas for the Guinea Gulf and Congo Basin, the trend is opposite. Additionally, we show that simulated annual leaf greenness (i.e., the Leaf Area Index) well-correlates with annual minimum SPEI, particularly over the Sahel, which is a transition zone, where the feedback between land-atmosphere is relatively strong. Furthermore, we note that our findings based on the ensemble mean are varying, but consistent among three different LBCs except for one LBC. Our results signify the importance of vegetation dynamics in predicting future droughts in West Africa, where the biosphere and atmosphere interactions play an important role in the regional climate setup.


Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 493 ◽  
Author(s):  
Leonard Druyan ◽  
Matthew Fulakeza

A prequel study showed that dynamic downscaling using a regional climate model (RCM) over Africa improved the Goddard Institute for Space Studies Atmosphere-Ocean Global Climate Model (GISS AOGCM: ModelE) simulation of June–September rainfall patterns over Africa. The current study applies bias corrections to the lateral and lower boundary data from the AOGCM driving the RCM, based on the comparison of a 30-year simulation to the actual climate. The analysis examines the horizontal pattern of June–September total accumulated precipitation, the time versus latitude evolution of zonal mean West Africa (WA) precipitation (showing monsoon onset timing), and the latitude versus altitude cross-section of zonal winds over WA (showing the African Easterly Jet and the Tropical Easterly Jet). The study shows that correcting for excessively warm AOGCM Atlantic sea-surface temperatures (SSTs) improves the simulation of key features, whereas applying 30-year mean bias corrections to atmospheric variables driving the RCM at the lateral boundaries does not improve the RCM simulations. We suggest that AOGCM climate projections for Africa should benefit from downscaling by nesting an RCM that has demonstrated skill in simulating African climate, driven with bias-corrected SST.


2017 ◽  
Vol 98 (1) ◽  
pp. 79-93 ◽  
Author(s):  
Elizabeth J. Kendon ◽  
Nikolina Ban ◽  
Nigel M. Roberts ◽  
Hayley J. Fowler ◽  
Malcolm J. Roberts ◽  
...  

Abstract Regional climate projections are used in a wide range of impact studies, from assessing future flood risk to climate change impacts on food and energy production. These model projections are typically at 12–50-km resolution, providing valuable regional detail but with inherent limitations, in part because of the need to parameterize convection. The first climate change experiments at convection-permitting resolution (kilometer-scale grid spacing) are now available for the United Kingdom; the Alps; Germany; Sydney, Australia; and the western United States. These models give a more realistic representation of convection and are better able to simulate hourly precipitation characteristics that are poorly represented in coarser-resolution climate models. Here we examine these new experiments to determine whether future midlatitude precipitation projections are robust from coarse to higher resolutions, with implications also for the tropics. We find that the explicit representation of the convective storms themselves, only possible in convection-permitting models, is necessary for capturing changes in the intensity and duration of summertime rain on daily and shorter time scales. Other aspects of rainfall change, including changes in seasonal mean precipitation and event occurrence, appear robust across resolutions, and therefore coarse-resolution regional climate models are likely to provide reliable future projections, provided that large-scale changes from the global climate model are reliable. The improved representation of convective storms also has implications for projections of wind, hail, fog, and lightning. We identify a number of impact areas, especially flooding, but also transport and wind energy, for which very high-resolution models may be needed for reliable future assessments.


2015 ◽  
Vol 29 (1) ◽  
pp. 17-35 ◽  
Author(s):  
J. F. Scinocca ◽  
V. V. Kharin ◽  
Y. Jiao ◽  
M. W. Qian ◽  
M. Lazare ◽  
...  

Abstract A new approach of coordinated global and regional climate modeling is presented. It is applied to the Canadian Centre for Climate Modelling and Analysis Regional Climate Model (CanRCM4) and its parent global climate model CanESM2. CanRCM4 was developed specifically to downscale climate predictions and climate projections made by its parent global model. The close association of a regional climate model (RCM) with a parent global climate model (GCM) offers novel avenues of model development and application that are not typically available to independent regional climate modeling centers. For example, when CanRCM4 is driven by its parent model, driving information for all of its prognostic variables is available (including aerosols and chemical species), significantly improving the quality of their simulation. Additionally, CanRCM4 can be driven by its parent model for all downscaling applications by employing a spectral nudging procedure in CanESM2 designed to constrain its evolution to follow any large-scale driving data. Coordination offers benefit to the development of physical parameterizations and provides an objective means to evaluate the scalability of such parameterizations across a range of spatial resolutions. Finally, coordinating regional and global modeling efforts helps to highlight the importance of assessing RCMs’ value added relative to their driving global models. As a first step in this direction, a framework for identifying appreciable differences in RCM versus GCM climate change results is proposed and applied to CanRCM4 and CanESM2.


2020 ◽  
Author(s):  
Sebastian Gayler ◽  
Rajina Bajracharya ◽  
Tobias Weber ◽  
Thilo Streck

<p>Agricultural ecosystem models, driven by climate projections and fed with soil information and plausible management scenarios are frequently used tools to predict future developments in agricultural landscapes. On the regional scale, the required soil parameters must be derived from soil maps that are available in different spatial resolutions, ranging from grid cell sizes of 50 m up to 1 km and more. The typical spatial resolution of regional climate projections is currently around 12 km. Given the small-scale heterogeneity in soil properties, using the most accurate soil representation could be important for predictions of crop growth. However, simulations with very highly resolved soil data requires greater computing time and higher effort for data organization and storage. Moreover, the higher resolution may not necessarily lead to better simulations due to redundant information of the land surface and because the impact of climate forcing could dominate over the effect of soil variability. This leads to the question if the use of high-resolution soil data leads to significantly different predictions of future yields and grain protein trends compared to simulations in which soil data is adapted to the resolution of the climate input.</p><p>This study investigated the impact of weather and soil input on simulated crop growth in an intensively used agricultural region in Southwest Germany. For all areas classified as ‘arable land’ (CLC10), winter wheat growth was simulated over a 44-year period (2006 to 2050) using weather projections from three regional climate models and soil information at two spatial resolutions. The simulations were performed with the model system Expert-N 5.0, where the crop model Gecros was combined with the Richards equation and the CN turnover module of the model Daisy. Soil hydraulic parameters as well as initial values of soil organic matter pools were estimated from BK50 soil map information on soil texture and soil organic matter content, using pedo-transfer functions and SOM pool fractionation following Bruun and Jensen (2002). The coarser soil map is derived from BK50 soil map (50m x 50m) by selecting only the dominant soil type in a 12km × 12km grid to be representative for that grid cell. The crop model was calibrated with field data of crop phenology, leaf area, biomass, yield and crop nitrogen, which were collected at a research station within the study area between 2009 and 2018.</p><p>The predicted increase in temperatures during the growing season correlated with earlier maturity, lower yields and a higher grain protein content. The regional mean values varied by +/- 0.5 t/ha or +/-0.3 percentage points of protein content depending to the climate model used. On the regional scale, the simulated trends remained unchanged using high-resolution or coarse resolution soil data. However, there are strong differences in both the forecasted averages and the distribution of forecasts, as the coarser resolution captures neither the small-scale heterogeneity nor the average of the high-resolution results.</p>


2020 ◽  
Author(s):  
Melissa Bukovsky ◽  
Linda Mearns ◽  
Jing Gao ◽  
Brian O'Neill

<p>In order to assess the combined effects of green-house-gas-induced climate change and land-use land-cover change (LULCC), we have produced regional climate model (RCM) simulations that are complementary to the North-American Coordinated Regional Downscaling Experiment (NA-CORDEX) simulations, but with future LULCCs that are consistent with particular Shared Socioeconomic Pathways (SSPs).  In standard, existing NA-CORDEX simulations, land surface characteristics are held constant at present day conditions.  These new simulations, in conjunction with the NA-CORDEX simulations, will help us assess the magnitude of the changes in regional climate forced by LULCC relative to those produced by increasing greenhouse gas concentrations.     </p><p>Understanding the magnitude of the regional climate effects of LULCC is important to the SSP-RCP scenarios framework.  Whether or not the pattern of climate change resulting from a given SSP-RCP pairing is sensitive to the pattern of LULCC is an understudied problem.  This work helps address this question, and will inform thinking about possible needed modifications to the scenarios framework to better account for climate-land use interactions.</p><p>Accordingly, in this presentation, we will examine the state of the climate at the end of the 21<sup>st</sup> century with and without SSP-driven LULCCs in RCM simulations produced using WRF under the RCP8.5 concentration scenario.  The included LULCC change effects have been created following the SSP3 and SSP5 narratives using an existing agricultural land model linked with a new long-term spatial urban land model. </p>


2021 ◽  
Author(s):  
Tugba Ozturk ◽  
Dominic Matte ◽  
Jens Hesselbjerg Christensen

AbstractEuropean climate is associated with variability and changes in the mid-latitude atmospheric circulation. In this study, we aim to investigate potential future change in circulation over Europe by using the EURO-CORDEX regional climate projections at 0.11° grid mesh. In particular, we analyze future change in 500-hPa geopotential height (Gph), 500-hPa wind speed and mean sea level pressure (MSLP) addressing different warming levels of 1 °C, 2 °C and 3 °C, respectively. Simple scaling with the global mean temperature change is applied to the regional climate projections for monthly mean 500-hPa Gph and 500-hPa wind speed. Results from the ensemble mean of individual models show a robust increase in 500-hPa Gph and MSLP in winter over Mediterranean and Central Europe, indicating an intensification of anticyclonic circulation. This circulation change emerges robustly in most simulations within the coming decade. There are also enhanced westerlies which transport warm and moist air to the Mediterranean and Central Europe in winter and spring. It is also clear that, models showing different responses to circulation depend very much on the global climate model ensemble member in which they are nested. For all seasons, particularly autumn, the ensemble mean is much more correlated with the end of the century than most of the individual models. In general, the emergence of a scaled pattern appears rather quickly.


2020 ◽  
Vol 59 (11) ◽  
pp. 1793-1807 ◽  
Author(s):  
Helene Birkelund Erlandsen ◽  
Kajsa M. Parding ◽  
Rasmus Benestad ◽  
Abdelkader Mezghani ◽  
Marie Pontoppidan

AbstractWe used empirical–statistical downscaling in a pseudoreality context, in which both large-scale predictors and small-scale predictands were based on climate model results. The large-scale conditions were taken from a global climate model, and the small-scale conditions were taken from dynamical downscaling of the same global model with a convection-permitting regional climate model covering southern Norway. This hybrid downscaling approach, a “perfect model”–type experiment, provided 120 years of data under the CMIP5 high-emission scenario. Ample calibration samples made rigorous testing possible, enabling us to evaluate the effect of empirical–statistical model configurations and predictor choices and to assess the stationarity of the statistical models by investigating their sensitivity to different calibration intervals. The skill of the statistical models was evaluated in terms of their ability to reproduce the interannual correlation and long-term trends in seasonal 2-m temperature T2m, wet-day frequency fw, and wet-day mean precipitation μ. We found that different 30-yr calibration intervals often resulted in differing statistical models, depending on the specific choice of years. The hybrid downscaling approach allowed us to emulate seasonal mean regional climate model output with a high spatial resolution (0.05° latitude and 0.1° longitude grid) for up to 100 GCM runs while circumventing the issue of short calibration time, and it provides a robust set of empirically downscaled GCM runs.


2020 ◽  
Author(s):  
Giorgia Fosser ◽  
Elizabeth Kendon ◽  
Steven Chan ◽  
David Stephenson

<p>Convection-permitting models (CPMs) provide a better representation of sub-daily precipitation statistics and convective processes, both on climate and NWP time scales, mainly thanks to the possibility to switch off the parameterisation of convection. The improved realism of these models gives us greater confidence in their ability to project future changes in short-duration precipitation extremes.</p><p>The first 12-member ensemble of convection-permitting climate simulations over the UK was completed within the latest updates to the UK Climate Projections (UKCP). The 20-year long CPM simulations for present-day and end of century periods are nested in an ensemble of regional climate model (RCM) simulations over Europe driven by a global climate model ensemble. In the driving ensembles, uncertain parameters in the model physics are varied within plausible bounds to sample uncertainty. Although no perturbations are applied directly to the CPMs, this project allow us to provide a first-ever estimate of uncertainty at convection-permitting scale and thus provide UK risk assessment studies with more reliable climate change projections at local and hourly scales.</p><p>Here we will present results looking at the uncertainty in future changes in hourly precipitation extremes across the CPM ensemble, and how this differs from the driving RCM ensemble.</p>


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 622
Author(s):  
Tugba Ozturk ◽  
F. Sibel Saygili-Araci ◽  
M. Levent Kurnaz

In this study, projected changes in climate extreme indices defined by the Expert Team on Climate Change Detection and Indices were investigated over Middle East and North Africa. Changes in the daily maximum and minimum temperature- and precipitation- based extreme indices were analyzed for the end of the 21st century compared to the reference period 1971–2000 using regional climate model simulations. Regional climate model, RegCM4.4 was used to downscale two different global climate model outputs to 50 km resolution under RCP4.5 and RCP8.5 scenarios. Results generally indicate an intensification of temperature- and precipitation- based extreme indices with increasing radiative forcing. In particular, an increase in annual minimum of daily minimum temperatures is more pronounced over the northern part of Mediterranean Basin and tropics. High increase in warm nights and warm spell duration all over the region with a pronounced increase in tropics are projected for the period of 2071–2100 together with decrease or no change in cold extremes. According to the results, a decrease in total wet-day precipitation and increase in dry spells are expected for the end of the century.


Sign in / Sign up

Export Citation Format

Share Document