Observed Southern Ocean Cloud Properties and Shortwave Reflection. Part I: Calculation of SW Flux from Observed Cloud Properties*

2014 ◽  
Vol 27 (23) ◽  
pp. 8836-8857 ◽  
Author(s):  
Daniel T. McCoy ◽  
Dennis L. Hartmann ◽  
Daniel P. Grosvenor

Abstract The sensitivity of the reflection of shortwave radiation over the Southern Ocean to the cloud properties there is estimated using observations from a suite of passive and active satellite instruments in combination with radiative transfer modeling. A composite cloud property observational data description is constructed that consistently incorporates mean cloud liquid water content, ice water content, liquid and ice particle radius information, vertical structure, vertical overlap, and spatial aggregation of cloud water as measured by optical depth versus cloud-top pressure histograms. The observational datasets used are Moderate Resolution Imaging Spectroradiometer (MODIS) effective radius filtered to mitigate solar zenith angle bias, the Multiangle Imaging Spectroradiometer (MISR) cloud-top height–optical depth (CTH–OD) histogram, the liquid water path from the University of Wisconsin dataset, and ice cloud properties from CloudSat. This cloud database is used to compute reflected shortwave radiation as a function of month and location over the ocean from 40° to 60°S, which compares well with observations of reflected shortwave radiation. This calculation is then used to test the sensitivity of the seasonal variation of shortwave reflection to the observed seasonal variation of cloud properties. Effective radius decreases during the summer season, which results in an increase in reflected solar radiation of 4–8 W m−2 during summer compared to what would be reflected if the effective radius remained constant at its annual-mean value. Summertime increases in low cloud fraction similarly increase the summertime reflection of solar radiation by 9–11 W m−2. In-cloud liquid water path is less in summertime, causing the reflected solar radiation to be 1–4 W m−2 less.

2010 ◽  
Vol 10 (20) ◽  
pp. 9851-9861 ◽  
Author(s):  
X. Ma ◽  
K. von Salzen ◽  
J. Cole

Abstract. Satellite-based cloud top effective radius retrieved by the CERES Science Team were combined with simulated aerosol concentrations from CCCma CanAM4 to examine relationships between aerosol and cloud that underlie the first aerosol indirect (cloud albedo) effect. Evidence of a strong negative relationship between sulphate, and organic aerosols, with cloud top effective radius was found for low clouds, indicating both aerosol types are contributing to the first indirect effect on a global scale. Furthermore, effects of aerosol on the cloud droplet effective radius are more pronounced for larger cloud liquid water paths. While CanAM4 broadly reproduces the observed relationship between sulphate aerosols and cloud droplets, it does not reproduce the dependency of cloud top droplet size on organic aerosol concentrations nor the dependency on cloud liquid water path. Simulations with a modified version of the model yield a more realistic dependency of cloud droplets on organic carbon. The robustness of the methods used in the study are investigated by repeating the analysis using aerosol simulated by the GOCART model and cloud top effective radii derived from the MODIS Science Team.


2016 ◽  
Vol 43 (20) ◽  
pp. 10,938-10,946 ◽  
Author(s):  
A. Bodas-Salcedo ◽  
T. Andrews ◽  
A. V. Karmalkar ◽  
M. A. Ringer

Author(s):  
Zeinab Takbiri ◽  
Lisa Milani ◽  
Clement Guilloteau ◽  
Efi Foufoula-Georgiou

Falling snow alters its own microwave signatures when it begins to accumulate on the ground making retrieval of precipitation challenging. This paper investigates the effects of snow-cover depth and cloud liquid water content on microwave signatures of terrestrial snowfall using reanalysis data and multi-annual measurements by the Global Precipitation Measurement (GPM) core satellite with particular emphasis on the 89 and 166 GHz channels. It is found that over snow cover shallower than 10 cm and low values of cloud liquid water path (LWP ≤125gm−2), the scattering of light snowfall (<0.5mmh−1) is detectable only at frequency 166 GHz while for higher intensities the signal can be also detected at 89 GHz. However, when snow depth exceeds ∼20 cm and the LWP is greater than ∼125gm−2 , the emission from the increased liquid water content in snowing clouds becomes the only surrogate microwave signal of snowfall that is stronger at frequency 89 GHz than 166 GHz. The results also reveal that over high latitudes above 60∘ N where the snow cover is thicker than 20 cm and LWP is lower than 125 gm−2 the microwave snowfall signal could not be detected with GPM. Our results provide quantitative insights for improving retrieval of snowfall in particular over snow-covered terrain.


2016 ◽  
Vol 29 (20) ◽  
pp. 7453-7476 ◽  
Author(s):  
Yi Huang ◽  
Steven T. Siems ◽  
Michael J. Manton ◽  
Daniel Rosenfeld ◽  
Roger Marchand ◽  
...  

Abstract This study employs four years of spatiotemporally collocated A-Train satellite observations to investigate cloud and precipitation characteristics in relation to the underlying properties of the Southern Ocean (SO). Results show that liquid-phase cloud properties strongly correlate with the sea surface temperature (SST). In summer, ubiquitous supercooled liquid water (SLW) is observed over SSTs less than about 4°C. Cloud-top temperature (CTT) and effective radius of liquid-phase clouds generally decrease for colder SSTs, whereas the opposite trend is observed for cloud-top height, cloud optical thickness, and liquid water path. The deduced cloud depth is larger over the colder oceans. Notable differences are observed between “precipitating” and “nonprecipitating” clouds and between different ocean sectors. Using a novel joint SST–CTT histogram, two distinct liquid-phase cloud types are identified, where the retrieved particle size appears to increase with decreasing CTT over warmer water (SSTs >~7°C), while the opposite is true over colder water. A comparison with the Northern Hemisphere (NH) storm-track regions suggests that the ubiquitous SLW with markedly smaller droplet size is a unique feature for the cold SO (occurring where SSTs <~4°C), while the presence of this cloud type is much less frequent over the NH counterparts, where the SSTs are rarely colder than about 4°C at any time of the year. This study also suggests that precipitation, which has a profound influence on cloud properties, remains poorly observed over the SO with the current spaceborne sensors. Large uncertainties in precipitation properties are associated with the ubiquitous boundary layer clouds within the lowest kilometer of the atmosphere.


2021 ◽  
Vol 13 (13) ◽  
pp. 2641
Author(s):  
Zeinab Takbiri ◽  
Lisa Milani ◽  
Clement Guilloteau ◽  
Efi Foufoula-Georgiou

Falling snow alters its own microwave signatures when it begins to accumulate on the ground, making retrieval of snowfall challenging. This paper investigates the effects of snow-cover depth and cloud liquid water content on microwave signatures of terrestrial snowfall using reanalysis data and multi-annual observations by the Global Precipitation Measurement (GPM) core satellite with particular emphasis on the 89 and 166 GHz channels. It is found that over shallow snow cover (snow water equivalent (SWE) ≤100kg m−2) and low values of cloud liquid water path (LWP 100–150 g m−2), the scattering of light snowfall (intensities ≤0.5mm h−1) is detectable only at frequency 166 GHz, while for higher snowfall rates, the signal can also be detected at 89 GHz. However, when SWE exceeds 200 kg m−2 and the LWP is greater than 100–150 g m−2, the emission from the increased liquid water content in snowing clouds becomes the only surrogate microwave signal of snowfall that is stronger at frequency 89 than 166 GHz. The results also reveal that over high latitudes above 60°N where the SWE is greater than 200 kg m−2 and LWP is lower than 100–150 g m−2, the snowfall microwave signal could not be detected with GPM without considering a priori data about SWE and LWP. Our findings provide quantitative insights for improving retrieval of snowfall in particular over snow-covered terrain.


2006 ◽  
Vol 6 (3) ◽  
pp. 3757-3799 ◽  
Author(s):  
T. Storelvmo ◽  
J. E. Kristjansson ◽  
G. Myhre ◽  
M. Johnsrud ◽  
F. Stordal

Abstract. The indirect effect of aerosols via liquid clouds is investigated by comparing aerosol and cloud characteristics from the Global Climate Model CAM-Oslo to those observed by the MODIS instrument onboard the TERRA and AQUA satellites (http://modis.gsfc.nasa.gov). The comparison is carried out for 15 selected regions ranging from remote and clean to densely populated and polluted. For each region, the regression coefficient and correlation coefficient for the following parameters are calculated: Aerosol Optical Depth vs. Liquid Cloud Optical Thickness, Aerosol Optical Depth vs. Liquid Cloud Droplet Effective Radius and Aerosol Optical Depth vs. Cloud Liquid Water Path. Modeled and observed correlation coefficients and regression coefficients are then compared for a 3-year period starting in January 2001. Additionally, global maps for a number of aerosol and cloud parameters crucial for the understanding of the aerosol indirect effect are compared for the same period of time. Significant differences are found between MODIS and CAM-Oslo both in the regional and global comparison. However, both the model and the observations show a positive correlation between Aerosol Optical Depth and Cloud Optical Depth in practically all regions and for all seasons, in agreement with the current understanding of aerosol-cloud interactions. The correlation between Aerosol Optical Depth and Liquid Cloud Droplet Effective Radius is variable both in the model and the observations. However, the model reports the expected negative correlation more often than the MODIS data. Aerosol Optical Depth is overall positively correlated to Cloud Liquid Water Path both in the model and the observations, with a few regional exceptions.


2011 ◽  
Vol 11 (6) ◽  
pp. 2893-2901 ◽  
Author(s):  
M. de la Torre Juárez ◽  
A. B. Davis ◽  
E. J. Fetzer

Abstract. Means, standard deviations, homogeneity parameters used in models based on their ratio, and the probability distribution functions (PDFs) of cloud properties from the MODerate resolution Infrared Spectrometer (MODIS) are estimated globally as function of averaging scale varying from 5 to 500 km. The properties – cloud fraction, droplet effective radius, and liquid water path – all matter for cloud-climate uncertainty quantification and reduction efforts. Global means and standard deviations are confirmed to change with scale. For the range of scales considered, global means vary only within 3% for cloud fraction, 7% for liquid water path, and 0.2% for cloud particle effective radius. These scale dependences contribute to the uncertainties in their global budgets. Scale dependence for standard deviations and generalized flatness are compared to predictions for turbulent systems. Analytical expressions are identified that fit best to each observed PDF. While the best analytical PDF fit to each variable differs, all PDFs are well described by log-normal PDFs when the mean is normalized by the standard deviation inside each averaging domain. Importantly, log-normal distributions yield significantly better fits to the observations than gaussians at all scales. This suggests a possible approach for both sub-grid and unified stochastic modeling of these variables at all scales. The results also highlight the need to establish an adequate spatial resolution for two-stream radiative studies of cloud-climate interactions.


2006 ◽  
Vol 6 (11) ◽  
pp. 3583-3601 ◽  
Author(s):  
T. Storelvmo ◽  
J. E. Kristjánsson ◽  
G. Myhre ◽  
M. Johnsrud ◽  
F. Stordal

Abstract. The indirect effect of aerosols via liquid clouds is investigated by comparing aerosol and cloud characteristics from the Global Climate Model CAM-Oslo to those observed by the MODIS instrument onboard the TERRA and AQUA satellites http://modis.gsfc.nasa.gov). The comparison is carried out for 15 selected regions ranging from remote and clean to densely populated and polluted. For each region, the regression coefficient and correlation coefficient for the following parameters are calculated: Aerosol Optical Depth vs. Liquid Cloud Optical Thickness, Aerosol Optical Depth vs. Liquid Cloud Droplet Effective Radius and Aerosol Optical Depth vs. Cloud Liquid Water Path. Modeled and observed correlation coefficients and regression coefficients are then compared for a 3-year period starting in January 2001. Additionally, global maps for a number of aerosol and cloud parameters crucial for the understanding of the aerosol indirect effect are compared for the same period of time. Significant differences are found between MODIS and CAM-Oslo both in the regional and global comparison. However, both the model and the observations show a positive correlation between Aerosol Optical Depth and Cloud Optical Depth in practically all regions and for all seasons, in agreement with the current understanding of aerosol-cloud interactions. The correlation between Aerosol Optical Depth and Liquid Cloud Droplet Effective Radius is variable both in the model and the observations. However, the model reports the expected negative correlation more often than the MODIS data. Aerosol Optical Depth is overall positively correlated to Cloud Liquid Water Path both in the model and the observations, with a few regional exceptions.


2010 ◽  
Vol 10 (9) ◽  
pp. 21303-21321
Author(s):  
M. de la Torre Juárez ◽  
A. B. Davis ◽  
E. J. Fetzer

Abstract. Means, standard deviations and Probability distribution functions (PDFs) of cloud properties from the MODerate resolution Infrared Spectrometer are estimated globally as function of averaging scale, varied from 5 to 500 km. These properties – cloud fraction, droplet effective radius, and liquid water path – all matter for cloud-climate uncertainty quantification and reduction efforts. Analytical expressions are identified that fit best to each observed PDF. Global means and standard deviations are confirmed to change with scale. For the range of scales considered, global means vary only within 3% for cloud fraction, 7% for liquid water path, and 0.2% for cloud particle effective radius. These scale dependences contribute to the uncertainties in their global budgets. Scale dependence for standard deviations is compared to predictions for turbulent systems. While the best analytical PDF fit to each variable differs, all PDFs are well described by log-normal PDFs when the mean is normalized by the standard deviation inside each averaging domain. Importantly, log-normal distributions yield significantly better fits to the observations than gaussians at all scales. This suggests a possible approach for both sub-grid and unified stochastic modeling of these variables at all scales. The results also highlight the need to establish an adequate spatial resolution for two-stream radiative studies of cloud-climate interactions.


2010 ◽  
Vol 10 (6) ◽  
pp. 13945-13968
Author(s):  
X. Ma ◽  
K. von Salzen ◽  
J. Cole

Abstract. Retrievals of cloud top effective radius from MODIS (as derived by CERES) were combined with aerosol concentrations from the CCCma CanAM4 to examine relationships between aerosol and cloud that underlie the first aerosol indirect (cloud albedo) effect. Evidence of a strong negative relationship between sulphate, and organic aerosols, with cloud top effective radius was found for low clouds, indicating both aerosol types are contributing to the first indirect effect on a global scale. Furthermore, effects of aerosol on the cloud droplet effective radius are more pronounced for larger cloud liquid water paths. While CanAM4 broadly reproduces the observed relationship between sulphate aerosols and cloud droplets, it does not reproduce the dependency of cloud top droplet size on organic aerosol concentrations nor the dependency on cloud liquid water path. Simulations with a modified version of the model yield a more realistic dependency of cloud droplets on organic carbon. The robustness of the methods used in the study are investigated by repeating the analysis using aerosol simulated by the GOCART model and cloud top effective radii derived from the MODIS science team.


Sign in / Sign up

Export Citation Format

Share Document