scholarly journals North American Pancontinental Droughts in Model Simulations of the Last Millennium*

2015 ◽  
Vol 28 (5) ◽  
pp. 2025-2043 ◽  
Author(s):  
Sloan Coats ◽  
Benjamin I. Cook ◽  
Jason E. Smerdon ◽  
Richard Seager

Abstract Pancontinental droughts in North America, or droughts that simultaneously affect a large percentage of the geographically and climatically distinct regions of the continent, present significant on-the-ground management challenges and, as such, are an important target for scientific research. The methodology of paleoclimate-model data comparisons is used herein to provide a more comprehensive understanding of pancontinental drought dynamics. Models are found to simulate pancontinental drought with the frequency and spatial patterns exhibited by the paleoclimate record. They do not, however, agree on the modes of atmosphere–ocean variability that produce pancontinental droughts because simulated El Niño–Southern Oscillation (ENSO), Pacific decadal oscillation (PDO), and Atlantic multidecadal oscillation (AMO) dynamics, and their teleconnections to North America, are different between models and observations. Despite these dynamical differences, models are able to reproduce large-magnitude centennial-scale variability in the frequency of pancontinental drought occurrence—an important feature of the paleoclimate record. These changes do not appear to be tied to exogenous forcing, suggesting that simulated internal hydroclimate variability on these time scales is large in magnitude. Results clarify our understanding of the dynamics that produce real-world pancontinental droughts while assessing the ability of models to accurately characterize future drought risks.

2018 ◽  
Vol 31 (11) ◽  
pp. 4309-4327 ◽  
Author(s):  
Samantha Stevenson ◽  
Jonathan T. Overpeck ◽  
John Fasullo ◽  
Sloan Coats ◽  
Luke Parsons ◽  
...  

Abstract Multidecadal hydroclimate variability has been expressed as “megadroughts” (dry periods more severe and prolonged than observed over the twentieth century) and corresponding “megapluvial” wet periods in many regions around the world. The risk of such events is strongly affected by modes of coupled atmosphere–ocean variability and by external impacts on climate. Accurately assessing the mechanisms for these interactions is difficult, since it requires large ensembles of millennial simulations as well as long proxy time series. Here, the Community Earth System Model (CESM) Last Millennium Ensemble is used to examine statistical associations among megaevents, coupled climate modes, and forcing from major volcanic eruptions. El Niño–Southern Oscillation (ENSO) strongly affects hydroclimate extremes: larger ENSO amplitude reduces megadrought risk and persistence in the southwestern United States, the Sahel, monsoon Asia, and Australia, with corresponding increases in Mexico and the Amazon. The Atlantic multidecadal oscillation (AMO) also alters megadrought risk, primarily in the Caribbean and the Amazon. Volcanic influences are felt primarily through enhancing AMO amplitude, as well as alterations in the structure of both ENSO and AMO teleconnections, which lead to differing manifestations of megadrought. These results indicate that characterizing hydroclimate variability requires an improved understanding of both volcanic climate impacts and variations in ENSO/AMO teleconnections.


2014 ◽  
Vol 27 (1) ◽  
pp. 383-397 ◽  
Author(s):  
Benjamin I. Cook ◽  
Jason E. Smerdon ◽  
Richard Seager ◽  
Edward R. Cook

Abstract Regional droughts are common in North America, but pan-continental droughts extending across multiple regions, including the 2012 event, are rare relative to single-region events. Here, the tree-ring-derived North American Drought Atlas is used to investigate drought variability in four regions over the last millennium, focusing on pan-continental droughts. During the Medieval Climate Anomaly (MCA), the central plains (CP), Southwest (SW), and Southeast (SE) regions experienced drier conditions and increased occurrence of droughts and the Northwest (NW) experienced several extended pluvials. Enhanced MCA aridity in the SW and CP manifested as multidecadal megadroughts. Notably, megadroughts in these regions differed in their timing and persistence, suggesting that they represent regional events influenced by local dynamics rather than a unified, continental-scale phenomena. There is no trend in pan-continental drought occurrence, defined as synchronous droughts in three or more regions. SW, CP, and SE (SW+CP+SE) droughts are the most common, occurring in 12% of all years and peaking in prevalence during the twelfth and thirteenth centuries; patterns involving three other regions occur in about 8% of years. Positive values of the Southern Oscillation index (La Niña conditions) are linked to SW, CP, and SE (SW+CP+SE) droughts and SW, CP, and NW (SW+CP+NW) droughts, whereas CP, NW, and SE (CP+NW+SE) droughts are associated with positive values of the Pacific decadal oscillation and Atlantic multidecadal oscillation. While relatively rare, pan-continental droughts are present in the paleo record and are linked to defined modes of climate variability, implying the potential for seasonal predictability. Assuming stable drought teleconnections, these events will remain an important feature of future North American hydroclimate, possibly increasing in their severity in step with other expected hydroclimate responses to increased greenhouse gas forcing.


Atmosphere ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 419 ◽  
Author(s):  
Chenfei Liao ◽  
Haiming Xu ◽  
Jiechun Deng ◽  
Leying Zhang

It has been well documented that storm track activity are closely related to the weather and short-term climate variability in the extratropics, which is affected by sea surface temperature anomalies over the tropical eastern Pacific Ocean. Interannual relationship between the El Niño-Southern Oscillation (ENSO) and the Atlantic storm track (AST) in spring modulated by the Atlantic multidecadal oscillation (AMO) was investigated using reanalysis data and model simulations in this study. The meridional displacement of the AST is significantly correlated with ENSO during negative AMO phase, while no significant relationship is found during positive AMO phase. This may be due to the difference of 500-hPa geopotential height anomalies induced by ENSO in different AMO phases. For an El Niño event during the negative AMO phase, an anomalous 500-hPa wave train propagates eastward across the North American continent, with positive height anomalies at the high latitudes, extending from South Canada to Newfoundland. Thus, easterly wind anomalies appear over central North America, upstream of the negative AST anomaly. Accordingly, the local eddy growth rate (EGR) and baroclinic energy conversion (BC) are obviously reduced, which weaken (strengthen) the southern (northern) part of the climatological AST. As a result, the AST is shifted northward significantly. During the positive AMO phase, the ENSO-related anomalous wave train at 500 hPa only propagates northeastward and is largely suppressed over Northwest Canada, with positive height anomalies confined to the northwest of North America. Therefore, no significant changes of the westerly jet, EGR and BC are found in the upstream region of the AST, and the meridional location of the AST generally remains unchanged. Most previous studies investigate AST variabilities in winter, and few focus on AST in spring. This work may be helpful in understanding more about the interannual and interdecadal variations of springtime AST and in further studying the weather and short-term climate changes caused by AST.


Climate ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 64 ◽  
Author(s):  
Kristoffer Rypdal

The main features of the instrumental global mean surface temperature (GMST) are reasonably well described by a simple linear response model driven by anthropogenic, volcanic and solar forcing. This model acts as a linear long-memory filter of the forcing signal. The physical interpretation of this filtering is the delayed response due to the thermal inertia of the ocean. This description is considerably more accurate if El Niño Southern Oscillation (ENSO) and the Atlantic Multidecadal Oscillation (AMO) are regarded as additional forcings of the global temperature and hence subject to the same filtering as the other forcing components. By considering these as predictors in a linear regression scheme, more than 92% of the variance in the instrumental GMST over the period 1870–2017 is explained by this model, in particular, all features of the 1998–2015 hiatus, including its death. While the more prominent pauses during 1870–1915 and 1940–1970 can be attributed to clustering in time of strong volcanic eruptions, the recent hiatus is an unremarkable phenomenon that is attributed to ENSO with a small contribution from solar activity.


2013 ◽  
Vol 52 (11) ◽  
pp. 2396-2409 ◽  
Author(s):  
Lejiang Yu ◽  
Shiyuan Zhong ◽  
Xindi Bian ◽  
Warren E. Heilman ◽  
Joseph J. Charney

AbstractThe Haines index (HI) is a fire-weather index that is widely used as an indicator of the potential for dry, low-static-stability air in the lower atmosphere to contribute to erratic fire behavior or large fire growth. This study examines the interannual variability of HI over North America and its relationship to indicators of large-scale circulation anomalies. The results show that the first three HI empirical orthogonal function modes are related respectively to El Niño–Southern Oscillation (ENSO), the Arctic Oscillation (AO), and the interdecadal sea surface temperature variation over the tropical Pacific Ocean. During the negative ENSO phase, an anomalous ridge (trough) is evident over the western (eastern) United States, with warm/dry weather and more days with high HI values in the western and southeastern United States. During the negative phase of the AO, an anomalous trough is found over the western United States, with wet/cool weather and fewer days with high HI, while an anomalous ridge occurs over the southern United States–northern Mexico, with an increase in the number of days with high HI. After the early 1990s, the subtropical high over the eastern Pacific Ocean and the Bermuda high were strengthened by a wave train that was excited over the tropical western Pacific Ocean and resulted in warm/dry conditions over the southwestern United States and western Mexico and wet weather in the southeastern United States. The above conditions are reversed during the positive phase of ENSO and AO and before the early 1990s.


1999 ◽  
Vol 12 (1) ◽  
pp. 273-288 ◽  
Author(s):  
Thomas M. Smith ◽  
Robert E. Livezey

Abstract Specifications of 1- and 3-month mean Pacific–North America region 700-hPa heights and U.S. surface temperatures and precipitation, from global sea surface temperatures (SSTs) and the ensemble average output of multiple runs of a general circulation model with the same SSTs prescribed, were explored with canonical correlation analysis. In addition to considerable specification skill, the authors found that 1) systematic errors in SST-forced model variability had substantial linear parts, 2) use of both predictor fields usually enhanced specification performance for the U.S. fields over that for just one of the predictor fields, and 3) skillful specification and model correction of the heights and temperatures were also possible for nonactive or transitional El Niño–Southern Oscillation situations.


2012 ◽  
Vol 25 (19) ◽  
pp. 6477-6495 ◽  
Author(s):  
Qi Hu ◽  
Song Feng

Abstract Interannual and multidecadal time-scale anomalies in sea surface temperatures (SST) of the North Atlantic and North Pacific Oceans could result in persistent atmospheric circulation and regional precipitation anomalies for years to decades. Understanding the processes that connect such SST forcings with circulation and precipitation anomalies is thus important for understanding climate variations and for improving predictions at interannual–decadal time scales. This study focuses on the interrelationship between the Atlantic multidecadal oscillation (AMO) and El Niño–Southern Oscillation (ENSO) and their resulting interannual to multidecadal time-scale variations in summertime precipitation in North America. Major results show that the ENSO forcing can strongly modify the atmospheric circulation variations driven by the AMO. Moreover, these modifications differ considerably between the subtropics and the mid- and high-latitude regions. In the subtropics, ENSO-driven variations in precipitation are fairly uniform across longitudes so ENSO effects only add interannual variations to the amplitude of the precipitation anomaly pattern driven by the AMO. In the mid- and high latitudes, ENSO-forced waves in the atmosphere strongly modify the circulation anomalies driven by the AMO, resulting in distinctive interannual variations following the ENSO cycle. The role of the AMO is shown by an asymmetry in precipitation during ENSO between the warm and cold phases of the AMO. These results extend the outcomes of the studies of the recent Climate Variability and Predictability (CLIVAR) Drought Working Group from the AMO and ENSO effects on droughts to understanding of the mechanisms and causal processes connecting the individual and combined SST forcing of the AMO and ENSO with the interannual and multidecadal variations in summertime precipitation and droughts in North America.


2013 ◽  
Vol 141 (10) ◽  
pp. 3610-3625 ◽  
Author(s):  
Kevin M. Grise ◽  
Seok-Woo Son ◽  
John R. Gyakum

Abstract Extratropical cyclones play a principal role in wintertime precipitation and severe weather over North America. On average, the greatest number of cyclones track 1) from the lee of the Rocky Mountains eastward across the Great Lakes and 2) over the Gulf Stream along the eastern coastline of North America. However, the cyclone tracks are highly variable within individual winters and between winter seasons. In this study, the authors apply a Lagrangian tracking algorithm to examine variability in extratropical cyclone tracks over North America during winter. A series of methodological criteria is used to isolate cyclone development and decay regions and to account for the elevated topography over western North America. The results confirm the signatures of four climate phenomena in the intraseasonal and interannual variability in North American cyclone tracks: the North Atlantic Oscillation (NAO), the El Niño–Southern Oscillation (ENSO), the Pacific–North American pattern (PNA), and the Madden–Julian oscillation (MJO). Similar signatures are found using Eulerian bandpass-filtered eddy variances. Variability in the number of extratropical cyclones at most locations in North America is linked to fluctuations in Rossby wave trains extending from the central tropical Pacific Ocean. Only over the far northeastern United States and northeastern Canada is cyclone variability strongly linked to the NAO. The results suggest that Pacific sector variability (ENSO, PNA, and MJO) is a key contributor to intraseasonal and interannual variability in the frequency of extratropical cyclones at most locations across North America.


Sign in / Sign up

Export Citation Format

Share Document