scholarly journals Indirect Aerosol Effect Increases CMIP5 Models’ Projected Arctic Warming

2016 ◽  
Vol 29 (4) ◽  
pp. 1417-1428 ◽  
Author(s):  
Petr Chylek ◽  
Timothy J. Vogelsang ◽  
James D. Klett ◽  
Nicholas Hengartner ◽  
Dave Higdon ◽  
...  

Abstract Phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models’ projections of the 2014–2100 Arctic warming under radiative forcing from representative concentration pathway 4.5 (RCP4.5) vary from 0.9° to 6.7°C. Climate models with or without a full indirect aerosol effect are both equally successful in reproducing the observed (1900–2014) Arctic warming and its trends. However, the 2014–2100 Arctic warming and the warming trends projected by models that include a full indirect aerosol effect (denoted here as AA models) are significantly higher (mean projected Arctic warming is about 1.5°C higher) than those projected by models without a full indirect aerosol effect (denoted here as NAA models). The suggestion is that, within models including full indirect aerosol effects, those projecting stronger future changes are not necessarily distinguishable historically because any stronger past warming may have been partially offset by stronger historical aerosol cooling. The CMIP5 models that include a full indirect aerosol effect follow an inverse radiative forcing to equilibrium climate sensitivity relationship, while models without it do not.

2020 ◽  
Vol 20 (16) ◽  
pp. 9591-9618 ◽  
Author(s):  
Christopher J. Smith ◽  
Ryan J. Kramer ◽  
Gunnar Myhre ◽  
Kari Alterskjær ◽  
William Collins ◽  
...  

Abstract. The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 (±0.23) W m−2, comprised of 1.81 (±0.09) W m−2 from CO2, 1.08 (± 0.21) W m−2 from other well-mixed greenhouse gases, −1.01 (± 0.23) W m−2 from aerosols and −0.09 (±0.13) W m−2 from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W m−2. The majority of the remaining 0.21 W m−2 is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol–cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from −0.63 to −1.37 W m−2, exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4×CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming.


2017 ◽  
Vol 10 (2) ◽  
pp. 585-607 ◽  
Author(s):  
William J. Collins ◽  
Jean-François Lamarque ◽  
Michael Schulz ◽  
Olivier Boucher ◽  
Veronika Eyring ◽  
...  

Abstract. The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) is endorsed by the Coupled-Model Intercomparison Project 6 (CMIP6) and is designed to quantify the climate and air quality impacts of aerosols and chemically reactive gases. These are specifically near-term climate forcers (NTCFs: methane, tropospheric ozone and aerosols, and their precursors), nitrous oxide and ozone-depleting halocarbons. The aim of AerChemMIP is to answer four scientific questions. 1. How have anthropogenic emissions contributed to global radiative forcing and affected regional climate over the historical period? 2. How might future policies (on climate, air quality and land use) affect the abundances of NTCFs and their climate impacts? 3.How do uncertainties in historical NTCF emissions affect radiative forcing estimates? 4. How important are climate feedbacks to natural NTCF emissions, atmospheric composition, and radiative effects? These questions will be addressed through targeted simulations with CMIP6 climate models that include an interactive representation of tropospheric aerosols and atmospheric chemistry. These simulations build on the CMIP6 Diagnostic, Evaluation and Characterization of Klima (DECK) experiments, the CMIP6 historical simulations, and future projections performed elsewhere in CMIP6, allowing the contributions from aerosols and/or chemistry to be quantified. Specific diagnostics are requested as part of the CMIP6 data request to highlight the chemical composition of the atmosphere, to evaluate the performance of the models, and to understand differences in behaviour between them.


2020 ◽  
Author(s):  
Zebedee R. J. Nicholls ◽  
Malte Meinshausen ◽  
Jared Lewis ◽  
Robert Gieseke ◽  
Dietmar Dommenget ◽  
...  

Abstract. Here we present results from the first phase of the Reduced Complexity Model Intercomparison Project (RCMIP). RCMIP is a systematic examination of reduced complexity climate models (RCMs), which are used to complement and extend the insights from more complex Earth System Models (ESMs), in particular those participating in the Sixth Coupled Model Intercomparison Project (CMIP6). In Phase 1 of RCMIP, with 14 participating models namely ACC2, AR5IR (2 and 3 box versions), CICERO-SCM, ESCIMO, FaIR, GIR, GREB, Hector, Held et al. two layer model, MAGICC, MCE, OSCAR and WASP, we highlight the structural differences across various RCMs and show that RCMs are capable of reproducing global-mean surface air temperature (GSAT) changes of ESMs and historical observations. We find that some RCMs are capable of emulating the GSAT response of CMIP6 models to within a root-mean square error of 0.2 °C (of the same order of magnitude as ESM internal variability) over a range of scenarios. Running the same model configurations for both RCP and SSP scenarios, we see that the SSPs exhibit higher effective radiative forcing throughout the second half of the 21st Century. Comparing our results to the difference between CMIP5 and CMIP6 output, we find that the change in scenario explains approximately 46 % of the increase in higher end projected warming between CMIP5 and CMIP6. This suggests that changes in ESMs from CMIP5 to CMIP6 explain the rest of the increase, hence the higher climate sensitivities of available CMIP6 models may not be having as large an impact on GSAT projections as first anticipated. A second phase of RCMIP will complement RCMIP Phase 1 by exploring probabilistic results and emulation in more depth to provide results available for the IPCC's Sixth Assessment Report author teams.


2021 ◽  
Author(s):  
Tristan Perotin

<p>Winter windstorms are one of the major natural hazards affecting Europe, potentially causing large damages. The study of windstorm risks is therefore particularly important for the insurance industry. Physical natural catastrophe models for the insurance industry appeared in the 1980s and enable a fine analysis of the risk by taking into account all of its components (hazard, vulnerability and exposure). One main aspect of this catastrophe modeling is the production and validation of extreme hazard scenarios. As observational weather data is very sparse before the 1980s, estimates of extreme windstorm risks are usually based on climate models, despite the limited resolution of these models. Even though this limitation can be partially corrected by statistical or dynamical downscaling and calibration techniques, new generations of climate models can bring new understanding of windstorm risks.</p><p>In that context, PRIMAVERA, a European Union Horizon2020 project, made available a windstorm event set based on 21 tier 1 (1950-2014) highresSST-present simulations of the High Resolution Model Intercomparison Project (HighResMIP) component of the sixth phase of the Coupled Model Intercomparison Project (CMIP6). The events were identified with a storm tracking algorithm, footprints were defined for each event as maximum gusts over a 72 hour period, and the footprints were re-gridded to the ERA5 grid and calibrated with a quantile mapping correction method. The native resolution of these simulations ranges from 150km (typical resolution of the CMIP5 models) to 25km.</p><p>We have studied the applicability of the PRIMAVERA European windstorm event set for the modeling of European windstorm risks for the insurance sector. Preliminary results show that losses simulated from the event set appear to be consistent with historical data for all of the included simulations. The event set enables a better representation of attritional events and storm clustering than other existing event sets. An alternative calibration technique for extreme gusts and potential future developments of the event set will be proposed.</p>


2020 ◽  
Author(s):  
Martin Stolpe ◽  
Katarzyna Tokarska ◽  
Sebastian Sippel ◽  
Erich Fischer ◽  
Christopher Smith ◽  
...  

<div>Future global warming estimates have been similar across past assessments, but several climate models of the latest Sixth Coupled Model Intercomparison Project (CMIP6) simulate much stronger warming, apparently inconsistent with past assessments. Here we show that projected future warming is correlated with the simulated warming trend during recent decades across CMIP5 and CMIP6 models, enabling us to constrain future warming based on consistency with the observed warming. These findings carry important policy-relevant implications: the observationally-constrained CMIP6 median warming in high emissions and ambitious mitigation scenarios is over 16% and 14% lower by 2050 compared to the raw CMIP6 median, respectively, and over 14% and 8% lower by 2090, relative to 1995-2014. Observationally-constrained CMIP6 warming is consistent with previous assessments based on CMIP5 models, and in an ambitious mitigation scenario, the likely range is consistent with reaching the Paris Agreement target.</div><div> </div><div>Reference: </div><div>Tokarska, K.B.<sup>†</sup>, Stolpe, M.B.<sup>†</sup>, Sippel, S., Fischer, E.M., Smith, C.J., Lehner, F., and Knutti, R. (2020). Past warming trend constrains future warming in CMIP6 models. <em>Science Advances</em>  (accepted).</div><div><sup>†</sup>equal first authors</div>


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
David C. Lafferty ◽  
Ryan L. Sriver ◽  
Iman Haqiqi ◽  
Thomas W. Hertel ◽  
Klaus Keller ◽  
...  

AbstractEfforts to understand and quantify how a changing climate can impact agriculture often rely on bias-corrected and downscaled climate information, making it important to quantify potential biases of this approach. Here, we use a multi-model ensemble of statistically bias-corrected and downscaled climate models, as well as the corresponding parent models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), to drive a statistical panel model of U.S. maize yields that incorporates season-wide measures of temperature and precipitation. We analyze uncertainty in annual yield hindcasts, finding that the CMIP5 models considerably overestimate historical yield variability while the bias-corrected and downscaled versions underestimate the largest weather-induced yield declines. We also find large differences in projected yields and other decision-relevant metrics throughout this century, leaving stakeholders with modeling choices that require navigating trade-offs in resolution, historical accuracy, and projection confidence.


2016 ◽  
Author(s):  
William J. Collins ◽  
Jean-François Lamarque ◽  
Michael Schulz ◽  
Olivier Boucher ◽  
Veronika Eyring ◽  
...  

Abstract. The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) is endorsed by the Coupled-Model Intercomparison Project 6 (CMIP6) and is designed to quantify the climate and air quality impacts of aerosols and chemically-reactive gases. These are specifically near-term climate forcers (NTCFs: tropospheric ozone and aerosols, and their precursors), methane, nitrous oxide and ozone-depleting halocarbons. The aim of AerChemMIP is to answer four scientific questions: 1. How have anthropogenic emissions contributed to global radiative forcing and affected regional climate over the historical period? 2. How will future policies (on climate, air quality and land use) affect these species and their climate impacts? 3. Can the uncertainties associated with anthropogenic emissions be quantified? 4. Can climate feedbacks occurring through changes in natural emissions be quantified? These questions will be addressed through targeted simulations with CMIP6 climate models that include an interactive representation of tropospheric aerosols and atmospheric chemistry. These simulations build on the CMIP6 Diagnostic, Evaluation and Characterization of Klima (DECK) experiments, the CMIP6 historical simulations, and future projections performed elsewhere in CMIP6, allowing the contributions from aerosols and chemistry to be quantified. Specific diagnostics are requested as part of the CMIP6 data request to evaluate the performance of the models, and to understand any differences in behaviour between them.


2020 ◽  
Author(s):  
Tony Payne ◽  
Sophie Nowicki ◽  
Heiko Goelzer ◽  

<p>Projections of sea level contribution from the Greenland and Antarctic ice sheets rely on atmospheric and oceanic drivers obtained from climate models.  The Earth System Models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6) generally project greater future warming compared to the previous CMIP5 effort. Here we use four CMIP6 models and a selection of CMIP5 models under two future climate scenarios to force multiple ice sheet models as part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). We find that the projected sea level contribution at 2100 from the multi ice sheet models under the CMIP6 scenarios falls within the CMIP5 range for the Antarctic ice sheet but is significantly increased for the Greenland ice sheet.  </p>


2020 ◽  
Vol 6 (12) ◽  
pp. eaaz9549 ◽  
Author(s):  
Katarzyna B. Tokarska ◽  
Martin B. Stolpe ◽  
Sebastian Sippel ◽  
Erich M. Fischer ◽  
Christopher J. Smith ◽  
...  

Future global warming estimates have been similar across past assessments, but several climate models of the latest Sixth Coupled Model Intercomparison Project (CMIP6) simulate much stronger warming, apparently inconsistent with past assessments. Here, we show that projected future warming is correlated with the simulated warming trend during recent decades across CMIP5 and CMIP6 models, enabling us to constrain future warming based on consistency with the observed warming. These findings carry important policy-relevant implications: The observationally constrained CMIP6 median warming in high emissions and ambitious mitigation scenarios is over 16 and 14% lower by 2050 compared to the raw CMIP6 median, respectively, and over 14 and 8% lower by 2090, relative to 1995–2014. Observationally constrained CMIP6 warming is consistent with previous assessments based on CMIP5 models, and in an ambitious mitigation scenario, the likely range is consistent with reaching the Paris Agreement target.


2013 ◽  
Vol 13 (6) ◽  
pp. 2939-2974 ◽  
Author(s):  
D. T. Shindell ◽  
J.-F. Lamarque ◽  
M. Schulz ◽  
M. Flanner ◽  
C. Jiao ◽  
...  

Abstract. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) examined the short-lived drivers of climate change in current climate models. Here we evaluate the 10 ACCMIP models that included aerosols, 8 of which also participated in the Coupled Model Intercomparison Project phase 5 (CMIP5). The models reproduce present-day total aerosol optical depth (AOD) relatively well, though many are biased low. Contributions from individual aerosol components are quite different, however, and most models underestimate east Asian AOD. The models capture most 1980–2000 AOD trends well, but underpredict increases over the Yellow/Eastern Sea. They strongly underestimate absorbing AOD in many regions. We examine both the direct radiative forcing (RF) and the forcing including rapid adjustments (effective radiative forcing; ERF, including direct and indirect effects). The models' all-sky 1850 to 2000 global mean annual average total aerosol RF is (mean; range) −0.26 W m−2; −0.06 to −0.49 W m−2. Screening based on model skill in capturing observed AOD yields a best estimate of −0.42 W m−2; −0.33 to −0.50 W m−2, including adjustment for missing aerosol components in some models. Many ACCMIP and CMIP5 models appear to produce substantially smaller aerosol RF than this best estimate. Climate feedbacks contribute substantially (35 to −58%) to modeled historical aerosol RF. The 1850 to 2000 aerosol ERF is −1.17 W m−2; −0.71 to −1.44 W m−2. Thus adjustments, including clouds, typically cause greater forcing than direct RF. Despite this, the multi-model spread relative to the mean is typically the same for ERF as it is for RF, or even smaller, over areas with substantial forcing. The largest 1850 to 2000 negative aerosol RF and ERF values are over and near Europe, south and east Asia and North America. ERF, however, is positive over the Sahara, the Karakoram, high Southern latitudes and especially the Arctic. Global aerosol RF peaks in most models around 1980, declining thereafter with only weak sensitivity to the Representative Concentration Pathway (RCP). One model, however, projects approximately stable RF levels, while two show increasingly negative RF due to nitrate (not included in most models). Aerosol ERF, in contrast, becomes more negative during 1980 to 2000. During this period, increased Asian emissions appear to have a larger impact on aerosol ERF than European and North American decreases due to their being upwind of the large, relatively pristine Pacific Ocean. There is no clear relationship between historical aerosol ERF and climate sensitivity in the CMIP5 subset of ACCMIP models. In the ACCMIP/CMIP5 models, historical aerosol ERF of about −0.8 to −1.5 W m−2 is most consistent with observed historical warming. Aerosol ERF masks a large portion of greenhouse forcing during the late 20th and early 21st century at the global scale. Regionally, aerosol ERF is so large that net forcing is negative over most industrialized and biomass burning regions through 1980, but remains strongly negative only over east and southeast Asia by 2000. Net forcing is strongly positive by 1980 over most deserts, the Arctic, Australia, and most tropical oceans. Both the magnitude of and area covered by positive forcing expand steadily thereafter.


Sign in / Sign up

Export Citation Format

Share Document