scholarly journals Temperature and Precipitation Extremes in the United States: Quantifying the Responses to Anthropogenic Aerosols and Greenhouse Gases,+

2016 ◽  
Vol 29 (7) ◽  
pp. 2689-2701 ◽  
Author(s):  
Nora R. Mascioli ◽  
Arlene M. Fiore ◽  
Michael Previdi ◽  
Gustavo Correa

Abstract Changes in extreme temperatures, heat waves, and heavy rainfall events have adverse effects on human health, air quality, and water resources. With aerosol-only (AER) and greenhouse gas–only (GHG) simulations from 1860 to 2005 in the GFDL CM3 chemistry–climate model, aerosol-induced versus greenhouse gas–induced changes in temperature (summer) and precipitation (all seasons) extremes over the United States are investigated. Small changes in these extremes in the all forcing simulations reflect cancellations between the effects of increasing anthropogenic aerosols and greenhouse gases. In AER, extreme high temperatures and the number of days with temperatures above the 90th percentile decline over most of the United States. The strongest response occurs in the western United States (−2.0°C and −14 days, regionally averaged) and the weakest response occurs in the southeastern United States (−0.6°C and −4.8 days). An opposite-signed response pattern occurs in GHG (+2.3°C and +11.5 days over the western United States and +1.6°C and +7.2 days over the southeastern United States). The similar spatial response patterns in AER versus GHG suggest a preferred regional mode of response that is largely independent of the type of forcing. Extreme precipitation over the eastern United States decreases in AER, particularly in winter, and increases over the eastern and central United States in GHG, particularly in spring. Over the twenty-first century under the representative concentration pathway 8.5 (RCP8.5) emissions scenario, the patterns of extreme temperature and precipitation associated with greenhouse gas forcing dominate.

Weed Science ◽  
1984 ◽  
Vol 32 (S1) ◽  
pp. 7-12 ◽  
Author(s):  
Donald C. Thill ◽  
K. George Beck ◽  
Robert H. Callihan

Downy brome (Bromus tectorumL. # BROTE), also known as cheatgrass, downy chess, broncograss, Mormon oats, and junegrass, was introduced into the United States from Europe, apparently during the middle of the nineteenth century (11, 21). According to Mack (23), downy brome entered British Columbia, Washington, and Utah around 1890; and by 1928 it had reached its present range, occupying much of the perennial grassland in Washington, Idaho, Oregon, Nevada, Utah, and British Columbia. Today, downy brome is a widespread weed throughout most of Canada, Mexico, and the United States, except for the southeastern United States (5, 17). Some consider downy brome to be an important forage because it provides most of the early spring grazing for livestock in western United States rangeland (21). However, it is also considered a troublesome weed in rangeland (31), winter wheat (Triticum aestivumL.) (27), several other crops (29), and noncropland (32).


2009 ◽  
Vol 23 (2) ◽  
pp. 5-27 ◽  
Author(s):  
Gilbert E Metcalf

The United States is moving closer to enacting a policy to reduce domestic emissions of greenhouse gases. A key element in any plan to reduce emissions will be to place a price on greenhouse gas emissions. This paper discusses the different approaches that can be taken to price emissions and assesses their strengths and weaknesses.


2012 ◽  
Vol 51 (5) ◽  
pp. 972-985 ◽  
Author(s):  
Prem Woli ◽  
Joel O. Paz

AbstractGlobal solar radiation Rg is an important input for crop models to simulate crop responses. Because the scarcity of long and continuous records of Rg is a serious limitation in many countries, Rg is estimated using models. For crop-model application, empirical Rg models that use commonly measured meteorological variables, such as temperature and precipitation, are generally preferred. Although a large number of models of this kind exist, few have been evaluated for conditions in the United States. This study evaluated the performances of 16 empirical, temperature- and/or precipitation-based Rg models for the southeastern United States. By taking into account spatial distribution and data availability, 30 locations in the region were selected and their daily weather data spanning eight years obtained. One-half of the data was used for calibrating the models, and the other half was used for evaluation. For each model, location-specific parameter values were estimated through regressions. Models were evaluated for each location using the root-mean-square error and the modeling efficiency as goodness-of-fit measures. Among the models that use temperature or precipitation as the input variable, the Mavromatis model showed the best performance. The piecewise linear regression–based Wu et al. model (WP) performed best not only among the models that use both temperature and precipitation but also among the 16 models evaluated, mainly because it has separate relationships for low and high radiation levels. The modeling efficiency of WP was from ~5% to more than 100% greater than those of the other models, depending on models and locations.


Author(s):  
Jennifer J. Smith

Coherence of place often exists alongside irregularities in time in cycles, and chapter three turns to cycles linked by temporal markers. Ray Bradbury’s The Martian Chronicles (1950) follows a linear chronology and describes the exploration, conquest, and repopulation of Mars by humans. Conversely, Louise Erdrich’s Love Medicine (1984) jumps back and forth across time to narrate the lives of interconnected families in the western United States. Bradbury’s cycle invokes a confluence of historical forces—time as value-laden, work as a calling, and travel as necessitating standardized time—and contextualizes them in relation to anxieties about the space race. Erdrich’s cycle invokes broader, oppositional conceptions of time—as recursive and arbitrary and as causal and meaningful—to depict time as implicated in an entire system of measurement that made possible the destruction and exploitation of the Chippewa people. Both volumes understand the United States to be preoccupied with imperialist impulses. Even as they critique such projects, they also point to the tenacity with which individuals encounter these systems, and they do so by creating “interstitial temporalities,” which allow them to navigate time at the crossroads of language and culture.


Science ◽  
2021 ◽  
Vol 371 (6536) ◽  
pp. eaax9050
Author(s):  
Steffen Breinlinger ◽  
Tabitha J. Phillips ◽  
Brigette N. Haram ◽  
Jan Mareš ◽  
José A. Martínez Yerena ◽  
...  

Vacuolar myelinopathy is a fatal neurological disease that was initially discovered during a mysterious mass mortality of bald eagles in Arkansas in the United States. The cause of this wildlife disease has eluded scientists for decades while its occurrence has continued to spread throughout freshwater reservoirs in the southeastern United States. Recent studies have demonstrated that vacuolar myelinopathy is induced by consumption of the epiphytic cyanobacterial species Aetokthonos hydrillicola growing on aquatic vegetation, primarily the invasive Hydrilla verticillata. Here, we describe the identification, biosynthetic gene cluster, and biological activity of aetokthonotoxin, a pentabrominated biindole alkaloid that is produced by the cyanobacterium A. hydrillicola. We identify this cyanobacterial neurotoxin as the causal agent of vacuolar myelinopathy and discuss environmental factors—especially bromide availability—that promote toxin production.


Author(s):  
Kathryn T Duncan ◽  
Meriam N Saleh ◽  
Kellee D Sundstrom ◽  
Susan E Little

Abstract Throughout North America, Dermacentor spp. ticks are often found feeding on animals and humans, and are known to transmit pathogens, including the Rocky Mountain spotted fever agent. To better define the identity and distribution of Dermacentor spp. removed from dogs and cats in the United States, ticks submitted from 1,457 dogs (n = 2,924 ticks) and 137 cats (n = 209 ticks) from veterinary practices in 44/50 states from February 2018-January 2020 were identified morphologically (n = 3,133); the identity of ticks from regions where Dermacentor andersoni (Stiles) have been reported, and a subset of ticks from other regions, were confirmed molecularly through amplification and sequencing of the ITS2 region and a 16S rRNA gene fragment. Of the ticks submitted, 99.3% (3,112/3,133) were Dermacentor variabilis (Say), 0.4% (12/3,133) were D. andersoni, and 0.3% (9/3,133) were Dermacentor albipictus (Packard). While translocation of pets prior to tick removal cannot be discounted, the majority (106/122; 87%) of Dermacentor spp. ticks removed from dogs and cats in six Rocky Mountain states (Montana, Idaho, Wyoming, Nevada, Utah, and Colorado) were D. variabilis, suggesting this species may be more widespread in the western United States than is currently recognized, or that D. andersoni, if still common in the region, preferentially feeds on hosts other than dogs and cats. Together, these data support the interpretation that D. variabilis is the predominant Dermacentor species found on pets throughout the United States, a finding that may reflect recent shifts in tick distribution.


2014 ◽  
Vol 53 (6) ◽  
pp. 1578-1592 ◽  
Author(s):  
Nina S. Oakley ◽  
Kelly T. Redmond

AbstractThe northeastern Pacific Ocean is a preferential location for the formation of closed low pressure systems. These slow-moving, quasi-barotropic systems influence vertical stability and sustain a moist environment, giving them the potential to produce or affect sustained precipitation episodes along the west coast of the United States. They can remain motionless or change direction and speed more than once and thus often pose difficult forecast challenges. This study creates an objective climatological description of 500-hPa closed lows to assess their impacts on precipitation in the western United States and to explore interannual variability and preferred tracks. Geopotential height at 500 hPa from the NCEP–NCAR global reanalysis dataset was used at 6-h and 2.5° × 2.5° resolution for the period 1948–2011. Closed lows displayed seasonality and preferential durations. Time series for seasonal and annual event counts were found to exhibit strong interannual variability. Composites of the tracks of landfalling closed lows revealed preferential tracks as the features move inland over the western United States. Correlations of seasonal event totals for closed lows with ENSO indices, the Pacific decadal oscillation (PDO), and the Pacific–North American (PNA) pattern suggested an above-average number of events during the warm phase of ENSO and positive PDO and PNA phases. Precipitation at 30 U.S. Cooperative Observer stations was attributed to closed-low events, suggesting 20%–60% of annual precipitation along the West Coast may be associated with closed lows.


Sign in / Sign up

Export Citation Format

Share Document