scholarly journals Why Do Global Climate Models Struggle to Represent Low-Level Clouds in the West African Summer Monsoon?

2017 ◽  
Vol 30 (5) ◽  
pp. 1665-1687 ◽  
Author(s):  
Lisa Hannak ◽  
Peter Knippertz ◽  
Andreas H. Fink ◽  
Anke Kniffka ◽  
Gregor Pante

Abstract Climate models struggle to realistically represent the West African monsoon (WAM), which hinders reliable future projections and the development of adequate adaption measures. Low-level clouds over southern West Africa (5°–10°N, 8°W–8°E) during July–September are an integral part of the WAM through their effect on the surface energy balance and precipitation, but their representation in climate models has received little attention. Here 30 (20) years of output from 18 (8) models participating in phase 5 of the Coupled Model Intercomparison Project (Year of Tropical Convection) are used to identify cloud biases and their causes. Compared to ERA-Interim reanalyses, many models show large biases in low-level cloudiness of both signs and a tendency to too high elevation and too weak diurnal cycles. At the same time, these models tend to have too strong low-level jets, the impact of which is unclear because of concomitant effects on temperature and moisture advection as well as turbulent mixing. Part of the differences between the models and ERA-Interim appear to be related to the different subgrid cloud schemes used. While nighttime tendencies in temperature and humidity are broadly realistic in most models, daytime tendencies show large problems with the vertical transport of heat and moisture. Many models simulate too low near-surface relative humidities, leading to insufficient low cloud cover and abundant solar radiation, and thus a too large diurnal cycle in temperature and relative humidity. In the future, targeted model sensitivity experiments will be needed to test possible feedback mechanisms between low clouds, radiation, boundary layer dynamics, precipitation, and the WAM circulation.

2008 ◽  
Vol 21 (24) ◽  
pp. 6636-6648 ◽  
Author(s):  
Christopher M. Taylor

Abstract Via its impact on surface fluxes, subseasonal variability in soil moisture has the potential to feed back on regional atmospheric circulations, and thereby rainfall. An understanding of this feedback mechanism in the climate system has been hindered by the lack of observations at an appropriate scale. In this study, passive microwave data at 10.65 GHz from the Tropical Rainfall Measuring Mission satellite are used to identify soil moisture variability during the West African monsoon. A simple model of surface sensible heat flux is developed from these data and is used, alongside atmospheric analyses from the European Centre for Medium-Range Weather Forecasting (ECMWF), to provide a new interpretation of monsoon variability on time scales of the order of 15 days. During active monsoon periods, the data indicate extensive areas of wet soil in the Sahel. The impact of the resulting weak surface heat fluxes is consistent in space and time with low-level variations in atmospheric heating and vorticity, as depicted in the ECMWF analyses. The surface-induced vorticity structure is similar to previously documented intraseasonal variations in the monsoon flow, notably a westward-propagating vortex at low levels. In those earlier studies, the variability in low-level flow was considered to be the critical factor in producing intraseasonal fluctuations in rainfall. The current analysis shows that this vortex can be regarded as an effect of the rainfall (via surface hydrology) as well as a cause.


2017 ◽  
Vol 30 (8) ◽  
pp. 2867-2884 ◽  
Author(s):  
Ross D. Dixon ◽  
Anne Sophie Daloz ◽  
Daniel J. Vimont ◽  
Michela Biasutti

Representing the West African monsoon (WAM) is a major challenge in climate modeling because of the complex interaction between local and large-scale mechanisms. This study focuses on the representation of a key aspect of West African climate, namely the Saharan heat low (SHL), in 22 global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) multimodel dataset. Comparison of the CMIP5 simulations with reanalyses shows large biases in the strength and location of the mean SHL. CMIP5 models tend to develop weaker climatological heat lows than the reanalyses and place them too far southwest. Models that place the climatological heat low farther to the north produce more mean precipitation across the Sahel, while models that place the heat low farther to the east produce stronger African easterly wave (AEW) activity. These mean-state biases are seen in model ensembles with both coupled and fixed sea surface temperatures (SSTs). The importance of SSTs on West African climate variability is well documented, but this research suggests SSTs are secondary to atmospheric biases for understanding the climatological SHL bias. SHL biases are correlated across the models to local radiative terms, large-scale tropical precipitation, and large-scale pressure and wind across the Atlantic, suggesting that local mechanisms that control the SHL may be connected to climate model biases at a much larger scale.


2019 ◽  
Vol 19 (3) ◽  
pp. 1623-1647 ◽  
Author(s):  
Anke Kniffka ◽  
Peter Knippertz ◽  
Andreas H. Fink

Abstract. Realistically simulating the West African monsoon system still poses a substantial challenge to state-of-the-art weather and climate models. One particular issue is the representation of the extensive and persistent low-level clouds over southern West Africa (SWA) during boreal summer. These clouds are important in regulating the amount of solar radiation reaching the surface, but their role in the local energy balance and the overall monsoon system has never been assessed. Based on sensitivity experiments using the ICON model for July 2006, we show for the first time that rainfall over SWA depends logarithmically on the optical thickness of low clouds, as these control the diurnal evolution of the planetary boundary layer, vertical stability and finally convection. In our experiments, the increased precipitation over SWA has a small direct effect on the downstream Sahel, as higher temperatures due to increased surface radiation are accompanied by decreases in low-level moisture due to changes in advection, leading to almost unchanged equivalent potential temperatures in the Sahel. A systematic comparison of simulations with and without convective parameterization reveals agreement in the direction of the precipitation signal but larger sensitivity for explicit convection. For parameterized convection the main rainband is too far south and the diurnal cycle shows signs of unrealistic vertical mixing, leading to a positive feedback on low clouds. The results demonstrate that relatively minor errors, variations or trends in low-level cloudiness over SWA can have substantial impacts on precipitation. Similarly, they suggest that the dimming likely associated with an increase in anthropogenic emissions in the future would lead to a decrease in summer rainfall in the densely populated Guinea coastal area. Future work should investigate longer-term effects of the misrepresentation of low clouds in climate models, e.g. moderated through effects on rainfall, soil moisture and evaporation.


2014 ◽  
Vol 27 (3) ◽  
pp. 994-1009 ◽  
Author(s):  
Eun-Soon Im ◽  
Marc P. Marcella ◽  
Elfatih A. B. Eltahir

Abstract This study investigates the impact of potential large-scale irrigation on the West African monsoon using the Massachusetts Institute of Technology regional climate model (MRCM). A new irrigation module is implemented to assess the impact of location and scheduling of irrigation on rainfall distribution over West Africa. A control simulation (without irrigation) and eight sensitivity experiments (with irrigation) are performed and compared to discern the effects of irrigation location and scheduling. It is found that the irrigation effect on soil moisture could force significant changes in spatial distribution and magnitude of rainfall, depending on the latitudinal location of irrigation. In general, the large irrigation-induced surface cooling owing to anomalously wet soil tends to suppress moist convection and rainfall, which in turn induces local subsidence and low-level anticyclonic circulation. These local effects are dominated by a consistent reduction of local rainfall over the irrigated land, irrespective of its location. However, the remote response of rainfall distribution to irrigation exhibits a significant sensitivity to the latitudinal position of irrigation and the intraseasonal variation of supplied irrigation water. The low-level northeasterly airflow associated with an anticyclonic circulation centered over the irrigation area, induced at optimal location and timing, would enhance the extent of low-level convergence areas through interaction with the prevailing monsoon flow, leading to a significant increase in rainfall. As the location of the irrigation area is moved from the coast northward, the regional rainfall change exhibits a significant decrease first, then increases gradually to a maximum corresponding to irrigation centered around 20°N, before it declines again.


2018 ◽  
Author(s):  
Anke Kniffka ◽  
Peter Knippertz ◽  
Andreas H. Fink

Abstract. Realistically simulating the West African monsoon system still poses a substantial challenge to state-of-the-art weather and climate models. One particular issue is the representation of the extensive and persistent low-level clouds over southern West Africa (SWA) during boreal summer. These clouds are important in regulating the amount of solar radiation reaching the surface but their role in the local energy balance and the overall monsoon system has never been assessed. Based on sensitivity experiments using the ICON model for July 2006, we show for the first time that rainfall over SWA depends logarithmically on the optical thickness of low clouds, as these control the diurnal evolution of the planetary boundary layer, vertical stability and finally convection. In our experiments, the increased precipitation over SWA has small direct effects on the downstream Sahel, as higher temperatures due to increased surface radiation are accompanied by decreases in low-level moisture due to changes in advection, leading to almost unchanged equivalent-potential temperatures in the Sahel. A systematic comparison of simulations with and without convective parameterisation reveals agreement in the direction of the precipitation signal but larger sensitivity for explicit convection. For parametrized convection the main rainband is too far south and the diurnal cycle shows signs of unrealistic vertical mixing, leading to a positive feedback on low clouds. The results demonstrate that relatively minor errors, variations or trends in low-level cloudiness over SWA can have substantial impacts on precipitation. Similarly they suggest that the dimming likely associated with an increase in anthropogenic emissions in the future would lead to a decrease of summer rainfall in the densely populated Guinea Coastal area. Future work should investigate longer-term effects of the misrepresentation of low clouds in climate models, e.g. moderated through effects on rainfall, soil moisture and evaporation.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 909 ◽  
Author(s):  
Zhenjie Li ◽  
Hui Tao ◽  
Heike Hartmann ◽  
Buda Su ◽  
Yanjun Wang ◽  
...  

Using data from the Integrated Global Radiosonde Archive Version 2 (IGRA2) and the Multi Model Ensemble (MME) of four global climate models (GCMs), named CanESM5, IPSL-CM6A-LR, MIROC6, and MRI-ESM2-0, within the framework of phase 6 of the Coupled Model Intercomparison Project (CMIP6), we analyzed the changes in atmospheric total column water vapor (TCWV) over Central Asia in the future (2021–2100) under SSP-RCPs scenarios: SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0, and SSP5-8.5, relative to baseline period (1986–2005). Results showed that the annual mean TCWV from IGRA2 was consistent with the model output from 1979 to 2014 in Central Asia. Besides, the spatial distribution of TCWV in Central Asia during the baseline period was consistent between the models. The regional average value of Central Asia was between 10.8 mm and 12.4 mm, and decreased with elevation. TCWV will increase under different SSP-RCPs from 2021 to 2040, but showed different trends after 2040. It will increase under SSP1-1.9 and SSP1-2.6 scenarios from 2021 to 2050, and decrease after that. It will grow from 2021 to 2055 under SSP4-3.4 scenario, and then stay essentially constant. Under SSP2-4.5 and SSP4-6.0 scenarios, TCWV will rise rapidly during 2021–2065, but the growth will decline from 2065 to 2100. TCWV will continue to increase under SSP3-7.0 and SSP5-8.5 scenarios, and the largest increase is projected under SSP5-8.5 scenario. Change in near-surface temperature (Ts) matched the change in TCWV, but changes in precipitation and evapotranspiration are not significant during 2021–2100. In spite of the large variations in TCWV under different SSP-RCPs, the dominant characteristic in all scenarios shows that a large TCWV increase is demonstrated over areas with small TCWV amounts during the baseline period. On the contrary, increases will be small where the TCWV amounts had been large during the baseline period. The change in TCWV is highly correlated to the increase in Ts in Central Asia. Under SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0, and SSP5-8.5 scenarios, the higher the temperature due to higher radiative forcing, the steeper the regression slope between TCWV and Ts change. It is closest to the theoretical value of the Clausius-Clapeyron equation under SSP3-7.0 and SSP5-8.5 scenarios, but not presented under other scenarios. Spatially, steeper regression slopes during 2021–2100 have been found around the Caspian Sea in the southwest and in the high-elevation areas in the southeast of Central Asia, which is likely related to the abundant local water supply for evaporation.


2012 ◽  
Vol 6 (5) ◽  
pp. 999-1018 ◽  
Author(s):  
A. Quiquet ◽  
H. J. Punge ◽  
C. Ritz ◽  
X. Fettweis ◽  
H. Gallée ◽  
...  

Abstract. Predicting the climate for the future and how it will impact ice sheet evolution requires coupling ice sheet models with climate models. However, before we attempt to develop a realistic coupled setup, we propose, in this study, to first analyse the impact of a model simulated climate on an ice sheet. We undertake this exercise for a set of regional and global climate models. Modelled near surface air temperature and precipitation are provided as upper boundary conditions to the GRISLI (GRenoble Ice Shelf and Land Ice model) hybrid ice sheet model (ISM) in its Greenland configuration. After 20 kyrs of simulation, the resulting ice sheets highlight the differences between the climate models. While modelled ice sheet sizes are generally comparable to the observed one, there are considerable deviations among the ice sheets on regional scales. These deviations can be explained by biases in temperature and precipitation near the coast. This is especially true in the case of global models. But the deviations between the climate models are also due to the differences in the atmospheric general circulation. To account for these differences in the context of coupling ice sheet models with climate models, we conclude that appropriate downscaling methods will be needed. In some cases, systematic corrections of the climatic variables at the interface may be required to obtain realistic results for the Greenland ice sheet (GIS).


2019 ◽  
Vol 32 (19) ◽  
pp. 6467-6490 ◽  
Author(s):  
Kimmo Ruosteenoja ◽  
Timo Vihma ◽  
Ari Venäläinen

Abstract Future changes in geostrophic winds over Europe and the North Atlantic region were studied utilizing output data from 21 CMIP5 global climate models (GCMs). Changes in temporal means, extremes, and the joint distribution of speed and direction were considered. In concordance with previous research, the time mean and extreme scalar wind speeds do not change pronouncedly in response to the projected climate change; some degree of weakening occurs in the majority of the domain. Nevertheless, substantial changes in high wind speeds are identified when studying the geostrophic winds from different directions separately. In particular, in northern Europe in autumn and in parts of northwestern Europe in winter, the frequency of strong westerly winds is projected to increase by up to 50%. Concurrently, easterly winds become less common. In addition, we evaluated the potential of the GCMs to simulate changes in the near-surface true wind speeds. In ocean areas, changes in the true and geostrophic winds are mainly consistent and the emerging differences can be explained (e.g., by the retreat of Arctic sea ice). Conversely, in several GCMs the continental wind speed response proved to be predominantly determined by fairly arbitrary changes in the surface properties rather than by changes in the atmospheric circulation. Accordingly, true wind projections derived directly from the model output should be treated with caution since they do not necessarily reflect the actual atmospheric response to global warming.


2021 ◽  
Author(s):  
Christoph Braun ◽  
Aiko Voigt ◽  
Johannes Hörner ◽  
Joaquim G. Pinto

<p>Stable waterbelt climate states with close to global ice cover challenge the classical Snowball Earth hypothesis because they provide a robust explanation for the survival of advanced marine species during the Neoproterozoic glaciations (1000 – 541 Million years ago). Whether Earth’s climate stabilizes in a waterbelt state or rushes towards a Snowball state is determined by the magnitude of the ice-albedo feedback in the subtropics, where dark, bare sea ice instead of snow-covered sea ice prevails. For a given bare sea-ice albedo, the subtropical ice-albedo feedback and thus the stable range of the waterbelt climate regime is sensitive to the albedo over ice-free ocean, which is largely determined by shortwave cloud-radiative effects (CRE). In the present-day climate, CRE are known to dominate the spread of climate sensitivity across global climate models. We here study the impact of uncertainty associated with CRE on the existence of geologically relevant waterbelt climate regimes using two global climate models and an idealized energy balance model. We find that the stable range of the waterbelt climate regime is very sensitive to the abundance of subtropical low-level mixed-phase clouds. If subtropical cloud cover is low, climate sensitivity becomes so high as to inhibit stable waterbelt states.</p><p>The treatment of mixed-phase clouds is highly uncertain in global climate models. Therefore we aim to constrain the uncertainty associated with their CRE by means of a hierarchy of global and regional simulations that span horizontal grid resolutions from 160 km to 300m, and in particular include large eddy simulations of subtropical mixed-phase clouds located over a low-latitude ice edge. In the cold waterbelt climate subtropical CRE arise from convective events caused by strong meridional temperature gradients and stratocumulus decks located in areas of large-scale descending motion. We identify the latter to dominate subtropical CRE and therefore focus our large eddy simulations on subtropical stratocumulus clouds. By conducting simulations with two extreme scenarios for the abundance of atmospheric mineral dust, which serves as ice-nucleating particles and therefore can control mixed-phase cloud physics, we aim to estimate the possible spread of CRE associated with subtropical mixed-phase clouds. From this estimate we may assess whether Neoproterozoic low-level cloud abundance may have been high enough to sustain a stable waterbelt climate regime.</p>


2018 ◽  
Vol 45 (8) ◽  
pp. 3728-3736 ◽  
Author(s):  
Penelope Maher ◽  
Geoffrey K. Vallis ◽  
Steven C. Sherwood ◽  
Mark J. Webb ◽  
Philip G. Sansom

Sign in / Sign up

Export Citation Format

Share Document