scholarly journals Contrasting Daytime and Nighttime Precipitation Variability between Observations and Eight Reanalysis Products from 1979 to 2014 in China

2017 ◽  
Vol 30 (16) ◽  
pp. 6443-6464 ◽  
Author(s):  
Chunlüe Zhou ◽  
Kaicun Wang

Daytime (0800–2000 Beijing time) and nighttime (2000–0800 Beijing time) precipitation at approximately 2100 stations in China from 1979 to 2014 was used to evaluate eight current reanalyses. Daytime, nighttime, and nighttime–daytime contrast of precipitation were examined in aspects of climatology, seasonal cycle, interannual variability, and trends. The results show that the ECMWF interim reanalysis (ERA-Interim), ERA-Interim/Land, Japanese 55-year Reanalysis (JRA-55), and NCEP Climate Forecast System Reanalysis (CFSR) can reproduce the observed spatial pattern of nighttime–daytime contrast in precipitation amount, exhibiting a positive center over the eastern Tibetan Plateau and a negative center over southeastern China. All of the reanalyses roughly reproduce seasonal variations of nighttime and daytime precipitation, but not always nighttime–daytime contrast. The reanalyses overestimate drizzle and light precipitation frequencies by greater than 31.5% and underestimate heavy precipitation frequencies by less than −30.8%. The reanalyses successfully reproduce interannual synchronizations of daytime and nighttime precipitation frequencies and amounts with an averaged correlation coefficient r of 0.66 against the observed data but overestimate their year-to-year amplitudes by approximately 64%. The trends in nighttime, daytime, and nighttime–daytime contrast of the observed precipitation amounts are mainly dominated by their frequencies ( r = 0.85). Less than moderate precipitation frequency has exhibited a significant downward trend (−2.5% decade−1 during nighttime and −1.7% decade−1 during daytime) since 1979, which is roughly captured by the reanalyses. However, only JRA-55 captures the observed trend of nighttime precipitation intensity (2.4% decade−1), while the remaining reanalyses show negative trends. Overall, JRA-55 and CFSR provide the best reproductions of the observed nighttime–daytime contrast in precipitation intensity, although they have considerable room for improvement.

2007 ◽  
Vol 20 (19) ◽  
pp. 4801-4818 ◽  
Author(s):  
Ying Sun ◽  
Susan Solomon ◽  
Aiguo Dai ◽  
Robert W. Portmann

Abstract Daily precipitation data from climate change simulations using the latest generation of coupled climate system models are analyzed for potential future changes in precipitation characteristics. For the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) B1 (a low projection), A1B (a medium projection), and A2 (a high projection) during the twenty-first century, all the models consistently show a shift toward more intense and extreme precipitation for the globe as a whole and over various regions. For both SRES B1 and A2, most models show decreased daily precipitation frequency and all the models show increased daily precipitation intensity. The multimodel averaged percentage increase in the precipitation intensity (2.0% K−1) is larger than the magnitude of the precipitation frequency decrease (−0.7% K−1). However, the shift in precipitation frequency distribution toward extremes results in large increases in very heavy precipitation events (>50 mm day−1), so that for very heavy precipitation, the percentage increase in frequency is much larger than the increase in intensity (31.2% versus 2.4%). The climate model projected increases in daily precipitation intensity are, however, smaller than that based on simple thermodynamics (∼7% K−1). Multimodel ensemble means show that precipitation amount increases during the twenty-first century over high latitudes, as well as over currently wet regions in low- and midlatitudes more than other regions. This increase mostly results from a combination of increased frequency and intensity. Over the dry regions in the subtropics, the precipitation amount generally declines because of decreases in both frequency and intensity. This indicates that wet regions may get wetter and dry regions may become drier mostly because of a simultaneous increase (decrease) of precipitation frequency and intensity.


2017 ◽  
Vol 30 (10) ◽  
pp. 3687-3703 ◽  
Author(s):  
Chunlüe Zhou ◽  
Kaicun Wang

Abstract Precipitation is expected to increase under global warming. However, large discrepancies in precipitation sensitivities to global warming among observations and models have been reported, partly owing to the large natural variability of precipitation, which accounts for over 90% of its total variance in China. Here, the authors first elucidated precipitation sensitivities to the long-term warming trend and interannual–decadal variations of surface air temperature Ta over China based on daily data from approximately 2000 stations from 1961 to 2014. The results show that the number of dry, trace, and light precipitation days has stronger sensitivities to the warming trend than to the Ta interannual–decadal variation, with 14.1%, −35.7%, and −14.6% K−1 versus 2.7%, −7.9%, and −3.1% K−1, respectively. Total precipitation frequency has significant sensitivities to the warming trend (−18.5% K−1) and the Ta interannual–decadal variation (−3.6% K−1) over China. However, very heavy precipitation frequencies exhibit larger sensitivities to the Ta interannual–decadal variation than to the long-term trend over Northwest and Northeast China and the Tibetan Plateau. A warming trend boosts precipitation intensity, especially for light precipitation (9.8% K−1). Total precipitation intensity increases significantly by 13.1% K−1 in response to the warming trend and by 3.3% K−1 in response to the Ta interannual–decadal variation. Very heavy precipitation intensity also shows significant sensitivity to the interannual–decadal variation of Ta (3.7% K−1), particularly in the cold season (8.0% K−1). Combining precipitation frequency and intensity, total precipitation amount has a negligible sensitivity to the warming trend, and the consequent trend in China is limited. Moderate and heavy precipitation amounts are dominated by their frequencies.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1596
Author(s):  
Fuhan Zhang ◽  
Xiaodong Wang ◽  
Jiping Guan

Multi-source meteorological data can reflect the development process of single meteorological elements from different angles. Making full use of multi-source meteorological data is an effective method to improve the performance of weather nowcasting. For precipitation nowcasting, this paper proposes a novel multi-input multi-output recurrent neural network model based on multimodal fusion and spatiotemporal prediction, named MFSP-Net. It uses precipitation grid data, radar echo data, and reanalysis data as input data and simultaneously realizes 0–4 h precipitation amount nowcasting and precipitation intensity nowcasting. MFSP-Net can perform the spatiotemporal-scale fusion of the three sources of input data while retaining the spatiotemporal information flow of them. The multi-task learning strategy is used to train the network. We conduct experiments on the dataset of Southeast China, and the results show that MFSP-Net comprehensively improves the performance of the nowcasting of precipitation amounts. For precipitation intensity nowcasting, MFSP-Net has obvious advantages in heavy precipitation nowcasting and the middle and late stages of nowcasting.


2020 ◽  
Vol 33 (13) ◽  
pp. 5357-5369
Author(s):  
Chunhui Lu ◽  
Fraser C. Lott ◽  
Ying Sun ◽  
Peter A. Stott ◽  
Nikolaos Christidis

AbstractIn China, summer precipitation contributes a major part of the total precipitation amount in a year and has major impacts on society and human life. Whether any changes in summer precipitation are affected by external forcing on the climate system is an important issue. In this study, an optimal fingerprinting method was used to compare the observed changes of total, heavy, moderate, and light precipitation in summer derived from newly homogenized observation data with the simulations from multiple climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5). The results demonstrate that the anthropogenic forcing signal can be detected and separated from the natural forcing signal in the observed increase of seasonal accumulated precipitation amount for heavy precipitation in summer in China and eastern China (EC). The simulated changes in heavy precipitation are generally consistent with observed change in China but are underestimated in EC. When the changes in precipitation of different intensities are considered simultaneously, the human influence on simultaneous changes in moderate and light precipitation can be detected in China and EC in summer. Changes attributable to anthropogenic forcing explain most of the observed regional changes for all categories of summer precipitation, and natural forcing contributes little. In the future, with increasing anthropogenic influence, the attribution-constrained projection suggests that heavy precipitation in summer will increase more than that from the model raw outputs. Society may therefore face a higher risk of heavy precipitation in the future.


2011 ◽  
Vol 11 (1) ◽  
pp. 1777-1801 ◽  
Author(s):  
C. W. Stjern

Abstract. Weekly cycles in aerosol concentration and corresponding cycles in precipitation have been reported over Europe, but results are conflicting. To obtain a large potential effect of aerosols on precipitation we here focus on a highly polluted region on the borders between Germany, Poland and the Czech Republic. Meteorological parameters from 30 surface stations in a mix of urban, rural and remote locations were analyzed for the time period 1983–2008, using three different tests: the Kruskal-Wallis test, a spectral analysis and a comparison of the regular 7-day week to constructed 6- and 8-day weeks. We expect a clear and statistically significant weekly cycle to pass all three tests. Precipitation amount and meteorological variables associated with convective conditions, such as the frequency of heavy precipitation events and observations of rain showers, showed two-peak weekly cycles with maxima on Tuesdays and during weekends. The amplitude of the precipitation cycle increased with longitude towards the more polluted eastern part of the region, but the statistical significance of the cycles did not change correspondingly. The amplitudes of the weekly cycles were in many cases larger for the heavily polluted 1983–1987 period than for the cleaner 2004–2008 as well as the total period, but were equally often largest in the clean period. Moreover, of all the variables, periods and seasons investigated, the weekly cycles were statistically significant only for summertime values of light precipitation frequency and cloud amount, and only by one of the three tests applied. Conclusively, clear weekly cycles in meteorological variables were not found in this polluted region of Europe.


2006 ◽  
Vol 19 (6) ◽  
pp. 916-934 ◽  
Author(s):  
Ying Sun ◽  
Susan Solomon ◽  
Aiguo Dai ◽  
Robert W. Portmann

Abstract Daily precipitation data from worldwide stations and gridded analyses and from 18 coupled global climate models are used to evaluate the models' performance in simulating the precipitation frequency, intensity, and the number of rainy days contributing to most (i.e., 67%) of the annual precipitation total. Although the models examined here are able to simulate the land precipitation amount well, most of them are unable to reproduce the spatial patterns of the precipitation frequency and intensity. For light precipitation (1–10 mm day−1), most models overestimate the frequency but produce patterns of the intensity that are in broad agreement with observations. In contrast, for heavy precipitation (>10 mm day−1), most models considerably underestimate the intensity but simulate the frequency relatively well. The average number of rainy days contributing to most of the annual precipitation is a simple index that captures the combined effects of precipitation frequency and intensity on the water supply. The different measures of precipitation characteristics examined in this paper reveal region-to-region differences in the observations and models of relevance for climate variability, water resources, and climate change.


2022 ◽  
Vol 8 (1) ◽  
pp. 163-170
Author(s):  
Ravidho Ramadhan ◽  
Marzuki Marzuki ◽  
Helmi Yusnaini ◽  
Ayu Putri Ningsih ◽  
Hiroyuki Hashiguchi ◽  
...  

Accurate satellite precipitation estimates over areas of complex topography are still challenging, while such accuracy is of importance to the adoption of satellite data for hydrological applications. This study evaluated the ability of Integrated Multi-satellitE Retrievals for GPM -Final (IMERG) V06 product to observe the extreme rainfall over a mountainous area of Sumatra Island. Fifteen years of optical rain gauge (ORG) observation at Kototabang, West Sumatra, Indonesia (100.32°E, 0.20°S, 865 m above sea level), were used as reference surface measurement. The performance of IMERG-F was evaluated using 13 extreme rain indexes formulated by the Expert Team on Climate Change Detection and Indices (ETCCDI). The IMERG-F overestimated the values of all precipitation amount-based indices (PRCPTOT, R85P, R95P, and R99P), three precipitation frequency-based indices (R1mm, R10mm, R20mm), one precipitation duration-based indices (CWD), and one precipitation intensity-based indices (RX5day). Furthermore, the IMERG-F underestimated the values of precipitation frequency-based indices (R50mm), one precipitation duration-based indices (CDD), one precipitation intensity-based indices (SDII). In terms of correlation, only five indexes have a correlation coefficient (R) > 0.5, consistent with Kling–Gupta Efficiency (KGE) value. These results confirm the need to improve the accuracy of the IMERG-F data in mountainous areas.


2019 ◽  
Vol 20 (11) ◽  
pp. 2215-2227 ◽  
Author(s):  
Hua Shang ◽  
Ming Xu ◽  
Fen Zhao ◽  
Sadiya Baba Tijjani

Abstract In this paper, we examined the spatial and temporal variations in precipitation amount, frequency, and intensity in China based on daily precipitation data from 2050 weather stations from 1973 to 2016. We used two Markov chain parameters to quantify the wet persistence and dry persistence that characterizes the temporal pattern of wet and dry days, respectively. We found that China’s annual precipitation changed little from 1973 to 2016, but varied dramatically from 524 to 688 mm yr−1, with an average of 592 mm yr−1, during this period. China’s precipitation frequency, the number of days with effective precipitation (>0.1 mm day−1) in a year, significantly decreased at a rate of 0.9 days decade−1 from 1973 to 2016, but precipitation intensity significantly increased at a rate of 0.12 mm day−1 decade−1 during the same period. Of the changes in China’s total precipitation amount, precipitation intensity played a dominant role, contributing 70.8%, while precipitation frequency contributed the remaining 29.2%. Little change was found in the wet persistence in China over the period of 1973–2016, but the dry persistence significantly increased with an average increasing trend of 1.62 × 10−3 probability per decade during the same period, and no significant correlations were found between these two variables. China’s precipitation also changed nonuniformly in space, with increasing trends in precipitation amount, frequency, intensity, and wet persistence in western and northeastern China but decreasing trends in the Sichuan basin, northeast of Inner Mongolia, and the Beijing–Tianjin–Hebei region.


2011 ◽  
Vol 11 (9) ◽  
pp. 4095-4104 ◽  
Author(s):  
C. W. Stjern

Abstract. Weekly cycles in aerosol concentration and corresponding cycles in precipitation have been reported over Europe, but results are conflicting. To obtain a large potential effect of aerosols on precipitation the focus will here be on a highly polluted region on the borders between Germany, Poland and the Czech Republic. Meteorological parameters from 30 surface stations in a mix of urban, rural and remote locations were analyzed for the time period 1983–2008, using three different tests: the Kruskal-Wallis test, a spectral analysis and a comparison of the regular 7-day week to constructed 6- and 8-day weeks. A clear and statistically significant weekly cycle will be expected to pass all three tests. Precipitation amount as well as meteorological variables associated with convective conditions, such as the frequency of heavy precipitation events and observations of rain showers, showed two-peak weekly cycles with maxima on Tuesdays and during weekends. The amplitudes of the weekly cycles were in many cases larger for the heavily polluted 1983–1987 period than for the cleaner 2004–2008 period, but were equally often largest in the cleaner period. Moreover, of all the variables, periods and seasons investigated, the weekly cycles were statistically significant only for summertime values of light precipitation frequency and cloud amount, and only by one of the three tests applied (the Kruskal-Wallis test). Conclusively, clear weekly cycles in meteorological variables were not found in this polluted region of Europe.


2020 ◽  
Vol 59 (3) ◽  
pp. 551-565
Author(s):  
Arthur T. DeGaetano ◽  
Griffin Mooers ◽  
Thomas Favata

AbstractTime-dependent changes in extreme precipitation occurrence across the northeastern United States are evaluated in terms of areal extent. Using gridded precipitation data for the period from 1950 to 2018, polygons are defined that are based on isohyets corresponding to extreme daily precipitation accumulations. Across the region, areal precipitation is characterized on the basis of the annual and seasonal number of extreme precipitation polygons and the area of the polygons. Using the subset of grid points that correspond to station locations in the northeastern United States, gridded precipitation replicates the observed trends in extreme precipitation based on station observations. Although the number of extreme precipitation polygons does not change significantly through time, there is a marked increase in the area covered by the polygons. The median annual polygon area nearly doubles from 1950 to 2013. Consistent results occur for percentiles other than the median and a range of extreme precipitation amount thresholds, with the most pronounced changes observed in spring and summer. Like trends in station data, outside the northeastern United States trends in extreme precipitation polygon area are negative, particularly in the western United States, or they are not statistically significant. Collectively, the results suggest that the increases in heavy precipitation frequency and amount observed at stations in the northeastern United States are a manifestation of an expansion of the spatial area over which extreme precipitation occurs rather than a change in the number of unique extreme precipitation polygons.


Sign in / Sign up

Export Citation Format

Share Document