How Often Will It Rain?

2007 ◽  
Vol 20 (19) ◽  
pp. 4801-4818 ◽  
Author(s):  
Ying Sun ◽  
Susan Solomon ◽  
Aiguo Dai ◽  
Robert W. Portmann

Abstract Daily precipitation data from climate change simulations using the latest generation of coupled climate system models are analyzed for potential future changes in precipitation characteristics. For the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) B1 (a low projection), A1B (a medium projection), and A2 (a high projection) during the twenty-first century, all the models consistently show a shift toward more intense and extreme precipitation for the globe as a whole and over various regions. For both SRES B1 and A2, most models show decreased daily precipitation frequency and all the models show increased daily precipitation intensity. The multimodel averaged percentage increase in the precipitation intensity (2.0% K−1) is larger than the magnitude of the precipitation frequency decrease (−0.7% K−1). However, the shift in precipitation frequency distribution toward extremes results in large increases in very heavy precipitation events (>50 mm day−1), so that for very heavy precipitation, the percentage increase in frequency is much larger than the increase in intensity (31.2% versus 2.4%). The climate model projected increases in daily precipitation intensity are, however, smaller than that based on simple thermodynamics (∼7% K−1). Multimodel ensemble means show that precipitation amount increases during the twenty-first century over high latitudes, as well as over currently wet regions in low- and midlatitudes more than other regions. This increase mostly results from a combination of increased frequency and intensity. Over the dry regions in the subtropics, the precipitation amount generally declines because of decreases in both frequency and intensity. This indicates that wet regions may get wetter and dry regions may become drier mostly because of a simultaneous increase (decrease) of precipitation frequency and intensity.

2017 ◽  
Vol 30 (7) ◽  
pp. 2501-2521 ◽  
Author(s):  
Xiang Gao ◽  
C. Adam Schlosser ◽  
Paul A. O’Gorman ◽  
Erwan Monier ◽  
Dara Entekhabi

Precipitation-gauge observations and atmospheric reanalysis are combined to develop an analogue method for detecting heavy precipitation events based on prevailing large-scale atmospheric conditions. Combinations of atmospheric variables for circulation (geopotential height and wind vector) and moisture (surface specific humidity, column and up to 500-hPa precipitable water) are examined to construct analogue schemes for the winter [December–February (DJF)] of the “Pacific Coast California” (PCCA) region and the summer [June–August (JJA)] of the Midwestern United States (MWST). The detection diagnostics of analogue schemes are calibrated with 1979–2005 and validated with 2006–14 NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA). All analogue schemes are found to significantly improve upon MERRA precipitation in characterizing the occurrence and interannual variations of observed heavy precipitation events in the MWST. When evaluated with the late twentieth-century climate model simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), all analogue schemes produce model medians of heavy precipitation frequency that are more consistent with observations and have smaller intermodel discrepancies than model-based precipitation. Under the representative concentration pathways (RCP) 4.5 and 8.5 scenarios, the CMIP5-based analogue schemes produce trends in heavy precipitation occurrence through the twenty-first century that are consistent with model-based precipitation, but with smaller intermodel disparity. The median trends in heavy precipitation frequency are positive for DJF over PCCA but are slightly negative for JJA over MWST. Overall, the analyses highlight the potential of the analogue as a powerful diagnostic tool for model deficiencies and its complementarity to an evaluation of heavy precipitation frequency based on model precipitation alone.


2012 ◽  
Vol 25 (8) ◽  
pp. 2897-2913 ◽  
Author(s):  
James V. Rudolph ◽  
Katja Friedrich ◽  
Urs Germann

Abstract Projections of twenty-first-century precipitation for seven Swiss river basins are generated by linking high-resolution (2 km × 2 km) radar-estimated precipitation observations to a global climate model (GCM) via synoptic weather patterns. The use of synoptic patterns characterizes the effect of changes in large-scale circulation, or dynamic effects, on precipitation. In each basin observed total daily precipitation received during advective synoptic patterns is shown to be dependent on the basin’s general topographic aspect. Across all basins convective synoptic patterns follow the same trend in total daily precipitation with cyclonic patterns consistently producing a larger amount of precipitation than anticyclonic patterns. Identification of synoptic patterns from a GCM for the twenty-first century [Community Climate System Model, version 3.0, (CCSM3)] shows increasing frequency of anticyclonic synoptic patterns, decreasing frequency of cyclonic patterns, and constant frequency of advective patterns over Switzerland. When coupled with observed radar-estimated precipitation for each synoptic pattern, the changes in synoptic pattern frequencies result in an approximately 10%–15% decrease in decadal precipitation over the course of the twenty-first century for seven Swiss river basins. The study results also show an insignificant change in the future (twenty-first century) probability of exceeding the current (2000–08) 95th quantile of total precipitation. The lack of a trend in exceeding the 95th quantile of precipitation in combination with a decreasing trend in total precipitation provides evidence that dynamic effects will not result in increased frequency of heavy precipitation events, but that heavy precipitation will account for a greater proportion of total precipitation in Swiss river basins by the end of the twenty-first century.


2017 ◽  
Vol 30 (16) ◽  
pp. 6443-6464 ◽  
Author(s):  
Chunlüe Zhou ◽  
Kaicun Wang

Daytime (0800–2000 Beijing time) and nighttime (2000–0800 Beijing time) precipitation at approximately 2100 stations in China from 1979 to 2014 was used to evaluate eight current reanalyses. Daytime, nighttime, and nighttime–daytime contrast of precipitation were examined in aspects of climatology, seasonal cycle, interannual variability, and trends. The results show that the ECMWF interim reanalysis (ERA-Interim), ERA-Interim/Land, Japanese 55-year Reanalysis (JRA-55), and NCEP Climate Forecast System Reanalysis (CFSR) can reproduce the observed spatial pattern of nighttime–daytime contrast in precipitation amount, exhibiting a positive center over the eastern Tibetan Plateau and a negative center over southeastern China. All of the reanalyses roughly reproduce seasonal variations of nighttime and daytime precipitation, but not always nighttime–daytime contrast. The reanalyses overestimate drizzle and light precipitation frequencies by greater than 31.5% and underestimate heavy precipitation frequencies by less than −30.8%. The reanalyses successfully reproduce interannual synchronizations of daytime and nighttime precipitation frequencies and amounts with an averaged correlation coefficient r of 0.66 against the observed data but overestimate their year-to-year amplitudes by approximately 64%. The trends in nighttime, daytime, and nighttime–daytime contrast of the observed precipitation amounts are mainly dominated by their frequencies ( r = 0.85). Less than moderate precipitation frequency has exhibited a significant downward trend (−2.5% decade−1 during nighttime and −1.7% decade−1 during daytime) since 1979, which is roughly captured by the reanalyses. However, only JRA-55 captures the observed trend of nighttime precipitation intensity (2.4% decade−1), while the remaining reanalyses show negative trends. Overall, JRA-55 and CFSR provide the best reproductions of the observed nighttime–daytime contrast in precipitation intensity, although they have considerable room for improvement.


2020 ◽  
Vol 59 (3) ◽  
pp. 551-565
Author(s):  
Arthur T. DeGaetano ◽  
Griffin Mooers ◽  
Thomas Favata

AbstractTime-dependent changes in extreme precipitation occurrence across the northeastern United States are evaluated in terms of areal extent. Using gridded precipitation data for the period from 1950 to 2018, polygons are defined that are based on isohyets corresponding to extreme daily precipitation accumulations. Across the region, areal precipitation is characterized on the basis of the annual and seasonal number of extreme precipitation polygons and the area of the polygons. Using the subset of grid points that correspond to station locations in the northeastern United States, gridded precipitation replicates the observed trends in extreme precipitation based on station observations. Although the number of extreme precipitation polygons does not change significantly through time, there is a marked increase in the area covered by the polygons. The median annual polygon area nearly doubles from 1950 to 2013. Consistent results occur for percentiles other than the median and a range of extreme precipitation amount thresholds, with the most pronounced changes observed in spring and summer. Like trends in station data, outside the northeastern United States trends in extreme precipitation polygon area are negative, particularly in the western United States, or they are not statistically significant. Collectively, the results suggest that the increases in heavy precipitation frequency and amount observed at stations in the northeastern United States are a manifestation of an expansion of the spatial area over which extreme precipitation occurs rather than a change in the number of unique extreme precipitation polygons.


Author(s):  
Hyun Min Sung ◽  
Jisun Kim ◽  
Sungbo Shim ◽  
Jeong-byn Seo ◽  
Sang-Hoon Kwon ◽  
...  

AbstractThe National Institute of Meteorological Sciences-Korea Meteorological Administration (NIMS-KMA) has participated in the Coupled Model Inter-comparison Project (CMIP) and provided long-term simulations using the coupled climate model. The NIMS-KMA produces new future projections using the ensemble mean of KMA Advanced Community Earth system model (K-ACE) and UK Earth System Model version1 (UKESM1) simulations to provide scientific information of future climate changes. In this study, we analyze four experiments those conducted following the new shared socioeconomic pathway (SSP) based scenarios to examine projected climate change in the twenty-first century. Present day (PD) simulations show high performance skill in both climate mean and variability, which provide a reliability of the climate models and reduces the uncertainty in response to future forcing. In future projections, global temperature increases from 1.92 °C to 5.20 °C relative to the PD level (1995–2014). Global mean precipitation increases from 5.1% to 10.1% and sea ice extent decreases from 19% to 62% in the Arctic and from 18% to 54% in the Antarctic. In addition, climate changes are accelerating toward the late twenty-first century. Our CMIP6 simulations are released to the public through the Earth System Grid Federation (ESGF) international data sharing portal and are used to support the establishment of the national adaptation plan for climate change in South Korea.


2021 ◽  
Vol 7 (5) ◽  
pp. 1113-1122
Author(s):  
Bo Chen ◽  
Shi-jun Xu ◽  
Xin-ping Zhang ◽  
Yi Xie

Using the methods of literature review, regression analysis and moving average, this paper selects the daily precipitation of Changsha and Chengde from 1951 to 1986 as samples, and analyzes the average precipitation, precipitation frequency, precipitation intensity, extreme precipitation time and other indicators of Changsha and Chengde from the perspective of interannual and seasonal changes Trends. The researches show that: the average precipitation of Changsha in the 36 years is 1151.2mm, spring is the wet season, autumn and winter are the dry seasons, and the maximum average precipitation is in spring; the average annual precipitation, precipitation frequency in spring, summer and winter, annual precipitation frequency, annual precipitation intensity and extreme precipitation events show a decreasing trend. The average annual precipitation of Chengde city is 454.1 mm, wet season in summer and dry season in spring, autumn and winter; the average annual precipitation, precipitation in four seasons, annual precipitation frequency, precipitation frequency in spring, autumn and winter, annual precipitation intensity and extreme precipitation events show a decreasing trend, while the precipitation frequency in summer shows an increasing trend. The study of regional climate change based on the time series data of this stage is of great significance to comprehensively understand the law of regional climate change and predict the future trend of climate change.


2017 ◽  
Vol 30 (17) ◽  
pp. 6701-6722 ◽  
Author(s):  
Daniel Bannister ◽  
Michael Herzog ◽  
Hans-F. Graf ◽  
J. Scott Hosking ◽  
C. Alan Short

The Sichuan basin is one of the most densely populated regions of China, making the area particularly vulnerable to the adverse impacts associated with future climate change. As such, climate models are important for understanding regional and local impacts of climate change and variability, like heat stress and drought. In this study, climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are validated over the Sichuan basin by evaluating how well each model can capture the phase, amplitude, and variability of the regionally observed mean, maximum, and minimum temperature between 1979 and 2005. The results reveal that the majority of the models do not capture the basic spatial pattern and observed means, trends, and probability distribution functions. In particular, mean and minimum temperatures are underestimated, especially during the winter, resulting in biases exceeding −3°C. Models that reasonably represent the complex basin topography are found to generally have lower biases overall. The five most skillful climate models with respect to the regional climate of the Sichuan basin are selected to explore twenty-first-century temperature projections for the region. Under the CMIP5 high-emission future climate change scenario, representative concentration pathway 8.5 (RCP8.5), the temperatures are projected to increase by approximately 4°C (with an average warming rate of +0.72°C decade−1), with the greatest warming located over the central plains of the Sichuan basin, by 2100. Moreover, the frequency of extreme months (where mean temperature exceeds 28°C) is shown to increase in the twenty-first century at a faster rate compared to the twentieth century.


Sign in / Sign up

Export Citation Format

Share Document