scholarly journals A Moist Static Energy Budget–Based Analysis of the Sahel Rainfall Response to Uniform Oceanic Warming

2017 ◽  
Vol 30 (15) ◽  
pp. 5637-5660 ◽  
Author(s):  
Spencer A. Hill ◽  
Yi Ming ◽  
Isaac M. Held ◽  
Ming Zhao

Climate models generate a wide range of precipitation responses to global warming in the African Sahel, but all that use the NOAA Geophysical Fluid Dynamics Laboratory AM2.1 model as their atmospheric component dry the region sharply. This study compares the Sahel’s wet season response to uniform 2-K SST warming in AM2.1 using either its default convective parameterization, relaxed Arakawa–Schubert (RAS), or an alternate, the University of Washington (UW) parameterization, using the moist static energy (MSE) budget to diagnose the relevant mechanisms. UW generates a drier, cooler control Sahel climate than does RAS and a modest rainfall increase with SST warming rather than a sharp decrease. Horizontal advection of dry, low-MSE air from the Sahara Desert—a leading-order term in the control MSE budget with either parameterization—is enhanced with oceanic warming, driven by enhanced meridional MSE and moisture gradients spanning the Sahel. With RAS, this occurs throughout the free troposphere and is balanced by anomalous MSE import through anomalous subsidence, which must be especially large in the midtroposphere where the moist static stability is small. With UW, the strengthening of the meridional MSE gradient is mostly confined to the lower troposphere, due in part to comparatively shallow prevailing convection. This necessitates less subsidence, enabling convective and total precipitation to increase with UW, although both large-scale precipitation and precipitation minus evaporation decrease. This broad set of hydrological and energetic responses persists in simulations with SSTs varied over a wide range.

2020 ◽  
Vol 33 (22) ◽  
pp. 9735-9748
Author(s):  
Jane E. Smyth ◽  
Yi Ming

AbstractThe tropical atmospheric circulation and attendant rainfall exhibit seasonally dependent responses to increasing temperatures. Understanding changes in the South American monsoon system is of particular interest given the sensitivity of the southern Amazon rainforest to changes in dry season length. We utilize the latest Geophysical Fluid Dynamics Laboratory Atmospheric Model (GFDL AM4) to analyze the response of the South American monsoon to uniform sea surface temperature (SST) warming. SST warming is a poorly understood yet impactful component of greenhouse gas–induced climate change. Region-mean rainfall declines by 11%, and net precipitation (precipitation minus evaporation) declines by 40%, during the monsoon onset season (September–November), producing a more severe dry season. The column-integrated moist static energy (MSE) budget helps elucidate the physical mechanisms of the simulated drying. Based on the seasonal analysis, precipitation reductions tend to occur when 1) a convecting region’s climatological MSE export is dominated by horizontal rather than vertical advection, and 2) the horizontal MSE advection increases in the perturbed climate, impeding ascent. On a synoptic scale, the South American low-level jet strengthens and exports more moisture from the monsoon sector, exacerbating spring drying.


2013 ◽  
Vol 26 (8) ◽  
pp. 2417-2431 ◽  
Author(s):  
Qiongqiong Cai ◽  
Guang J. Zhang ◽  
Tianjun Zhou

Abstract The role of shallow convection in Madden–Julian oscillation (MJO) simulation is examined in terms of the moist static energy (MSE) and moisture budgets. Two experiments are carried out using the NCAR Community Atmosphere Model, version 3.0 (CAM3.0): a “CTL” run and an “NSC” run that is the same as the CTL except with shallow convection disabled below 700 hPa between 20°S and 20°N. Although the major features in the mean state of outgoing longwave radiation, 850-hPa winds, and vertical structure of specific humidity are reasonably reproduced in both simulations, moisture and clouds are more confined to the planetary boundary layer in the NSC run. While the CTL run gives a better simulation of the MJO life cycle when compared with the reanalysis data, the NSC shows a substantially weaker MJO signal. Both the reanalysis data and simulations show a recharge–discharge mechanism in the MSE evolution that is dominated by the moisture anomalies. However, in the NSC the development of MSE and moisture anomalies is weaker and confined to a shallow layer at the developing phases, which may prevent further development of deep convection. By conducting the budget analysis on both the MSE and moisture, it is found that the major biases in the NSC run are largely attributed to the vertical and horizontal advection. Without shallow convection, the lack of gradual deepening of upward motion during the developing stage of MJO prevents the lower troposphere above the boundary layer from being preconditioned for deep convection.


2021 ◽  
Author(s):  
Anna Lea Albright ◽  
Sandrine Bony ◽  
Bjorn Stevens ◽  
Raphaela Vogel

<p>The trades form an important link in the atmospheric energy supply, transporting moisture and momentum to the deep tropics and influencing the global hydrological cycle. Trade-wind cumuli are the most ubiquitous cloud type over tropical oceans, yet models disagree in simulating their response to warming. Our study takes advantage of extensive in-situ soundings performed during the EUREC4A campaign, which took place in the downstream trades of the North Atlantic in winter 2020. We employ 1068 dropsondes made in a ca. 2deg x 2deg area to close the moisture and energy budgets of the subcloud layer and atmospheric column. Our motivation for closing moisture and energy budgets using EUREC4A data is two-fold. First, we try to understand which large-scale environmental factors control variability in subcloud layer moisture and moist static energy, given their influence on setting convective potential. Second, we quantify the interplay between clouds and their environment through an energetic lens. The cloud radiative effect emerges as a residual from the total column moist static energy budget, yielding an energetic estimate of clouds. We quantify how this cloud radiative effect compares with coincident satellite and geometric (i.e. cloud fraction) estimates of cloudiness, varies on different scales, and relates to large-scale environmental conditions.</p>


2021 ◽  
Author(s):  
Ines Höschel ◽  
Dörthe Handorf ◽  
Christoph Jacobi ◽  
Johannes Quaas

<p>The loss of Arctic sea ice as a consequence of global warming is changing the forcing of the atmospheric large-scale circulation.  Areas not covered with sea ice anymore may act as an additional heat source.  Associated changes in Rossby wave propagation can initiate tropospheric and stratospheric pathways of Arctic - Mid-latitude linkages.  These pathways have the potential to impact on the large-scale energy transport into the Arctic.  On the other hand, studies show that the large-scale circulation contributes to Arctic warming by poleward transport of moist static energy. This presentation shows results from research within the Transregional Collaborative Research Center “ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)3” funded by the Deutsche Forschungsgemeinschaft.  Using the ERA interim and ERA5 reanalyses the meridional moist static energy transport during high ice and low ice periods is compared.  The investigation discriminates between contributions from planetary and synoptic scale.  Special emphasis is put on the seasonality of the modulations of the large-scale energy transport.</p>


2019 ◽  
Vol 116 (25) ◽  
pp. 12261-12269 ◽  
Author(s):  
William Nordhaus

Concerns about the impact on large-scale earth systems have taken center stage in the scientific and economic analysis of climate change. The present study analyzes the economic impact of a potential disintegration of the Greenland ice sheet (GIS). The study introduces an approach that combines long-run economic growth models, climate models, and reduced-form GIS models. The study demonstrates that social cost–benefit analysis and damage-limiting strategies can be usefully extended to illuminate issues with major long-term consequences, as well as concerns such as potential tipping points, irreversibility, and hysteresis. A key finding is that, under a wide range of assumptions, the risk of GIS disintegration makes a small contribution to the optimal stringency of current policy or to the overall social cost of climate change. It finds that the cost of GIS disintegration adds less than 5% to the social cost of carbon (SCC) under alternative discount rates and estimates of the GIS dynamics.


2018 ◽  
Vol 31 (14) ◽  
pp. 5731-5748 ◽  
Author(s):  
Casey D. Burleyson ◽  
Samson M. Hagos ◽  
Zhe Feng ◽  
Brandon W. J. Kerns ◽  
Daehyun Kim

Abstract The characteristics of Madden–Julian oscillation (MJO) events that strengthen and weaken over the Maritime Continent (MC) are examined. The real-time multivariate MJO (RMM) index is used to assess changes in global MJO amplitude over the MC. The MJO weakens at least twice as often as it strengthens over the MC, with weakening MJOs being twice as likely during El Niño compared to La Niña years and the reverse for strengthening events. MJO weakening shows a pronounced seasonal cycle that has not been previously documented. During the Northern Hemisphere (NH) summer and fall the RMM index can strengthen over the MC. MJOs that approach the MC during the NH winter typically weaken according to the RMM index. This seasonal cycle corresponds to whether the MJO crosses the MC primarily north or south of the equator. Because of the seasonal cycle, weakening MJOs are characterized by positive sea surface temperature and moist-static energy anomalies in the Southern Hemisphere (SH) of the MC compared to strengthening events. Analysis of the outgoing longwave radiation (OLR) MJO index (OMI) shows that MJO precipitation weakens when it crosses the MC along the equator. A possible explanation of this based on previous results is that the MJO encounters more landmasses and taller mountains when crossing along the equator or in the SH. The new finding of a seasonal cycle in MJO weakening over the MC highlights the importance of sampling MJOs throughout the year in future field campaigns designed to study MJO–MC interactions.


2020 ◽  
Author(s):  
Shuyi Chen ◽  
Brandon Kerns

<p>Precipitation is a highly complex, multiscale entity in the global weather and climate system. It is affected by both global and local circulations over a wide range of time scales from hours to weeks and beyond. It is also an important measure of the water and energy cycle in climate models. To better understand the physical processes controlling precipitation in climate models, we need to evaluate precipitation not only in in terms of its global climatological distribution but also multiscale variability in time and space.</p><p>This study presents a new set of metrics to quantify characteristics of global precipitation using 20-years the TRMM-GPM Multisatellite Precipitation Analysis (TMPA) data from June 1998 to May 2018 over the global tropics-midlatitudes (50°S – 50°N) with 3-hourly and 0.25-degree resolutions.  We developed a method to identify large-scale precipitation objects (LPOs) using a temporal-spatial filter and then track the LPOs in time, namely the Large-scale Precipitation Tracking systems (LPTs) as described in Kerns and Chen (2016, 2020, JGR-Atmos). The most unique feature of this method is that it can distinguish large-scale precipitation organized by, for example, monsoons and the Madden-Julian Oscillation (MJO), from that of mesoscale and synoptic scale weather systems, as well as those relatively stationary local topographically and diurnally forced precipitation. The new precipitation metrics based on the satellite observation are used to evaluate climate models.  Early results show that most models overproduce precipitation over land in non-LPTs and underestimate large-scale precipitation (LPTs) over the oceans compared with the observations. For example, the MJO contributes up to 40-50% of the observed annual precipitation over the Indio-Pacific warm pool region, which are usually much less in the models because of models’ inability to represent the MJO dynamics. Furthermore, the spatial variability of precipitation associated with ENSO is more pronounced in the observations than models.</p>


2017 ◽  
Vol 98 (1) ◽  
pp. 79-93 ◽  
Author(s):  
Elizabeth J. Kendon ◽  
Nikolina Ban ◽  
Nigel M. Roberts ◽  
Hayley J. Fowler ◽  
Malcolm J. Roberts ◽  
...  

Abstract Regional climate projections are used in a wide range of impact studies, from assessing future flood risk to climate change impacts on food and energy production. These model projections are typically at 12–50-km resolution, providing valuable regional detail but with inherent limitations, in part because of the need to parameterize convection. The first climate change experiments at convection-permitting resolution (kilometer-scale grid spacing) are now available for the United Kingdom; the Alps; Germany; Sydney, Australia; and the western United States. These models give a more realistic representation of convection and are better able to simulate hourly precipitation characteristics that are poorly represented in coarser-resolution climate models. Here we examine these new experiments to determine whether future midlatitude precipitation projections are robust from coarse to higher resolutions, with implications also for the tropics. We find that the explicit representation of the convective storms themselves, only possible in convection-permitting models, is necessary for capturing changes in the intensity and duration of summertime rain on daily and shorter time scales. Other aspects of rainfall change, including changes in seasonal mean precipitation and event occurrence, appear robust across resolutions, and therefore coarse-resolution regional climate models are likely to provide reliable future projections, provided that large-scale changes from the global climate model are reliable. The improved representation of convective storms also has implications for projections of wind, hail, fog, and lightning. We identify a number of impact areas, especially flooding, but also transport and wind energy, for which very high-resolution models may be needed for reliable future assessments.


2016 ◽  
Vol 73 (2) ◽  
pp. 743-759 ◽  
Author(s):  
Yukari Sumi ◽  
Hirohiko Masunaga

Abstract A moist static energy (MSE) budget analysis is applied to quasi-2-day waves to examine the effects of thermodynamic processes on the wave propagation mechanism. The 2-day waves are defined as westward inertia–gravity (WIG) modes identified with filtered geostationary infrared measurements, and the thermodynamic parameters and MSE budget variables computed from reanalysis data are composited with respect to the WIG peaks. The composite horizontal and vertical MSE structures are overall as theoretically expected from WIG wave dynamics. A prominent horizontal MSE advection is found to exist, although the wave dynamics is mainly regulated by vertical advection. The vertical advection decreases MSE around the times of the convective peak, plausibly resulting from the first baroclinic mode associated with deep convection. Normalized gross moist stability (NGMS) is used to examine the thermodynamic processes involving the large-scale dynamics and convective heating. NGMS gradually decreases to zero before deep convection and reaches a maximum after the convection peak, where low (high) NGMS leads (lags) deep convection. The decrease in NGMS toward zero before the occurrence of active convection suggests an increasingly efficient conversion from convective heating to large-scale dynamics as the wave comes in, while the increase afterward signifies that this linkage swiftly dies out after the peak.


Sign in / Sign up

Export Citation Format

Share Document