Variations of Climate, Surface Energy Budget, and Minimum Snow/Ice Extent over Canadian Arctic Landmass for 2000–16

2018 ◽  
Vol 31 (3) ◽  
pp. 1155-1172 ◽  
Author(s):  
Alexander P. Trishchenko ◽  
Shusen Wang

Abstract Snow and ice over land are important hydrological resources and sensitive indicators of climate change. The Moderate Resolution Imaging Spectroradiometer (MODIS) dataset at 250-m spatial resolution generated at the Canada Centre for Remote Sensing (CCRS) is used to derive the annual minimum snow and ice (MSI) extent over the Canadian Arctic landmass over a 17-yr time span (2000–16). The smallest MSI extent (1.53 × 105 km2) was observed in 2012, the largest (2.09 × 105 km2) was observed in 2013; the average value was 1.70 × 105 km2. Several reanalyses and observational datasets are assessed to explain the derived MSI variations: the ERA-Interim reanalysis, North American Regional Reanalysis (NARR), Clouds and the Earth’s Radiant Energy System (CERES) radiative fluxes, and European Space Agency’s GlobSnow dataset. Comparison with the Randolph Glacier Inventory (RGI) showed two important facts: 1) the semipermanent snowpack in the Canadian Arctic that persists through the entire melting season is a significant component relative to the ice caps and glacier-covered areas (up to 36% or 5.58 × 104 km2), and 2) the MSI variations are related to variations in the local climate dynamics such as warm season average temperature, energy fluxes, and snow cover. The correlation coefficients (absolute values) can be as high as 0.77. The reanalysis-based MSI estimates agree with satellite MSI results (average bias of 2.2 × 103 km2 or 1.3% of the mean value).

2019 ◽  
Author(s):  
Wenying Su ◽  
Patrick Minnis ◽  
Lusheng Liang ◽  
David P. Duda ◽  
Konstantin Khlopenkov ◽  
...  

Abstract. The National Institute of Standards and Technology Advanced Radiometer (NISTAR) onboard Deep Space Climate Observatory (DSCOVR) provides continuous full disc global broadband irradiance measurements over most of the sunlit side of the Earth. The three active cavity radiometers measures the total radiant energy from the sun-lit side of the Earth in shortwave (SW, 0.2–4 µm), total (0.4–100 µm), and near-infrared (NIR, 0.7–4 µm) channels. The Level 1 NISTAR dataset provides the filtered radiances (the ratio between irradiance and solid angle). To determine the daytime top-of-atmosphere (TOA) shortwave and longwave radiative fluxes, the NISTAR measured shortwave radiances must be unfiltered first. An unfiltering algorithm was developed for the NISTAR SW and NIR channels using a spectral radiance data base calculated for typical Earth scenes. The resulting unfiltered NISTAR radiances are then converted to full disk daytime SW and LW flux, by accounting for the anisotropic characteristics of the Earth-reflected and emitted radiances. The anisotropy factors are determined using scene identifications determined from multiple low Earth orbit and geostationary satellites and the angular distribution models (ADMs) developed using data collected by the Clouds and the Earth's Radiant Energy System (CERES). Global annual daytime mean SW fluxes from NISTAR are about 6 % greater than those from CERES, and both show strong diurnal variations with daily maximum-minimum differences as great as 20 Wm−2 depending on the conditions of the sunlit portion of the Earth. They are also highly correlated, having correlation coefficients of 0.89, indicating that they both capture the diurnal variation. Global annual daytime mean LW fluxes from NISTAR are about 3 % greater than those from CERES, but the correlation between them is only about 0.38.


2020 ◽  
Vol 13 (2) ◽  
pp. 429-443 ◽  
Author(s):  
Wenying Su ◽  
Patrick Minnis ◽  
Lusheng Liang ◽  
David P. Duda ◽  
Konstantin Khlopenkov ◽  
...  

Abstract. The National Institute of Standards and Technology Advanced Radiometer (NISTAR) onboard the Deep Space Climate Observatory (DSCOVR) provides continuous full-disk global broadband irradiance measurements over most of the sunlit side of the Earth. The three active cavity radiometers measure the total radiant energy from the sunlit side of the Earth in shortwave (SW; 0.2–4 µm), total (0.4–100 µm), and near-infrared (NIR; 0.7–4 µm) channels. The Level 1 NISTAR dataset provides the filtered radiances (the ratio between irradiance and solid angle). To determine the daytime top-of-atmosphere (TOA) shortwave and longwave radiative fluxes, the NISTAR-measured shortwave radiances must be unfiltered first. An unfiltering algorithm was developed for the NISTAR SW and NIR channels using a spectral radiance database calculated for typical Earth scenes. The resulting unfiltered NISTAR radiances are then converted to full-disk daytime SW and LW flux by accounting for the anisotropic characteristics of the Earth-reflected and emitted radiances. The anisotropy factors are determined using scene identifications determined from multiple low-Earth orbit and geostationary satellites as well as the angular distribution models (ADMs) developed using data collected by the Clouds and the Earth's Radiant Energy System (CERES). Global annual daytime mean SW fluxes from NISTAR are about 6 % greater than those from CERES, and both show strong diurnal variations with daily maximum–minimum differences as great as 20 Wm−2 depending on the conditions of the sunlit portion of the Earth. They are also highly correlated, having correlation coefficients of 0.89, indicating that they both capture the diurnal variation. Global annual daytime mean LW fluxes from NISTAR are 3 % greater than those from CERES, but the correlation between them is only about 0.38.


2013 ◽  
Vol 30 (3) ◽  
pp. 557-568 ◽  
Author(s):  
Alexander Radkevich ◽  
Konstantin Khlopenkov ◽  
David Rutan ◽  
Seiji Kato

Abstract Identification of clear-sky snow and ice is an important step in the production of cryosphere radiation budget products, which are used in the derivation of long-term data series for climate research. In this paper, a new method of clear-sky snow/ice identification for Moderate Resolution Imaging Spectroradiometer (MODIS) is presented. The algorithm’s goal is to enhance the identification of snow and ice within the Clouds and the Earth’s Radiant Energy System (CERES) data after application of the standard CERES scene identification scheme. The input of the algorithm uses spectral radiances from five MODIS bands and surface skin temperature available in the CERES Single Scanner Footprint (SSF) product. The algorithm produces a cryosphere rating from an aggregated test: a higher rating corresponds to a more certain identification of the clear-sky snow/ice-covered scene. Empirical analysis of regions of interest representing distinctive targets such as snow, ice, ice and water clouds, open waters, and snow-free land selected from a number of MODIS images shows that the cryosphere rating of snow/ice targets falls into 95% confidence intervals lying above the same confidence intervals of all other targets. This enables recognition of clear-sky cryosphere by using a single threshold applied to the rating, which makes this technique different from traditional branching techniques based on multiple thresholds. Limited tests show that the established threshold clearly separates the cryosphere rating values computed for the cryosphere from those computed for noncryosphere scenes, whereas individual tests applied consequently cannot reliably identify the cryosphere for complex scenes.


2021 ◽  
Vol 14 (1) ◽  
pp. 124-132
Author(s):  
S. V. Muminov ◽  
B. B. Barotov ◽  
M. M. Makhmudova ◽  
F. A. Khamidov ◽  
M. Z. Akhmedov ◽  
...  

The paper presents results of the radon survey carried out in preschool and school institutions in Dushanbe, Republic of Tajikistan. Radon concentration was measured using solid state nuclear track detectors Radtrak2. Track detectors were exposed for 3 months during the heating and warm seasons of the year in the same premises. In total, the measurements were performed in 200 premises of 14 kindergartens and 36 schools. The radon equilibrium equivalent concentration during the heating and warm seasons and the annual average radon equilibrium equivalent concentration were calculated. Annual average radon equilibrium equivalent concentration in surveyed buildings ranged from 42 to 331 Bq/m3 with the mean value of 98 Bq/m3 on the first floor and 56 Bq/m3 on the second floor. It was shown that both seasonal values and annual average value of radon equilibrium equivalent concentration in the premises on the second floor are lower than in the premises on the first floor. The annual average effective dose to children from exposure to radon and its progeny in the premises of schools and kindergartens in Dushanbe ranged from 0,64 to 1,64 mSv. The limit value of annual average radon equilibrium equivalent concentration in dwellings and public buildings is set to 100 Bq/m3 for newly built buildings and 200 Bq/m3 for existing buildings in the Radiation safety norms (NRB-06) of the Republic of Tajikistan. This limit was exceeded only on the first floors in one kindergarten during the heating season, in three schools during the warm season and in eight schools during the heating season. When comparing the results of measurements of radon equilibrium equivalent concentration with data on the geological structure of underlying rocks at the locations of the surveyed buildings, no regularity was found. Additional detailed measurements in the buildings, including basements, will help to identify the source of radon entry into the indoor air and to develop recommendations for implementing radon remediation actions separately for each building. The survey results were also used to develop a radon map of Dushanbe.


2004 ◽  
Vol 21 (11) ◽  
pp. 1701-1709 ◽  
Author(s):  
Pierre Le Borgne ◽  
Gérard Legendre ◽  
Anne Marsouin

Abstract As a preliminary step to solar irradiance calculations, the Centre de Météorologie Spatiale (CMS) has developed a pragmatic approach to calibrate the visible channels of Meteosat and GOES-East imagers. The responsivity of the Meteosat visible channel has been monitored with three desert targets from 1989 to 2002. The annual degradation rate has been estimated to 1.8% for Meteosat-4, 1.4% for Meteosat-5, and 1.9% for Meteosat-7. A reference calibration coefficient for Meteosat-7 has been derived from a comparison with Clouds and Earth's Radiant Energy System (CERES) data in summer 1998. Meteosat and GOES-East data corresponding to homogenous pixels along longitude 37.5°W and around 1200 LST have been compared on a monthly basis, leading to a calibration of GOES-East visible channel. GOES-8 data have been processed from June 1998 to December 2002 and the annual degradation rate obtained during this period is 4.0%. GOES-12 data have been processed from April to August 2003. During this short period, no degradation rate can be estimated but only a mean value of the calibration coefficient, which corresponds to a 7% increase of the prelaunch coefficient.


2021 ◽  
Vol 14 (10) ◽  
pp. 6633-6646
Author(s):  
David Painemal ◽  
Douglas Spangenberg ◽  
William L. Smith Jr. ◽  
Patrick Minnis ◽  
Brian Cairns ◽  
...  

Abstract. Satellite retrievals of cloud droplet effective radius (re) and optical depth (τ) from the Thirteenth Geostationary Operational Environmental Satellite (GOES-13) and the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua and Terra, based on the Clouds and the Earth's Radiant Energy System (CERES) project algorithms, are evaluated with airborne data collected over the midlatitude boundary layer during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES). The airborne dataset comprises in situ re from the Cloud Droplet Probe (CDP) and remotely sensed re and τ from the airborne Research Scanning Polarimeter (RSP). GOES-13 and MODIS (Aqua and Terra) re values are systematically greater than those from the CDP and RSP by at least 4.8 (GOES-13) and 1.7 µm (MODIS) despite relatively high linear correlation coefficients (r=0.52–0.68). In contrast, the satellite τ underestimates its RSP counterpart by −3.0, with r=0.76–0.77. Overall, MODIS yields better agreement with airborne data than GOES-13, with biases consistent with those reported for subtropical stratocumulus clouds. While the negative bias in satellite τ is mostly due to the retrievals having been collected in highly heterogeneous cloud scenes, the causes for the positive bias in satellite re, especially for GOES-13, are more complex. Although the high viewing zenith angle (∼65∘) and coarser pixel resolution for GOES-13 could explain a re bias of at least 0.7 µm, the higher GOES-13 re bias relative to that from MODIS is likely rooted in other factors. In this regard, a near-monotonic increase was also observed in GOES-13 re up to 1.0 µm with the satellite scattering angle (Θ) over the angular range 116–165∘; that is, re increases toward the backscattering direction. Understanding the variations of re with Θ will require the combined use of theoretical computations along with intercomparisons of satellite retrievals derived from sensors with dissimilar viewing geometry.


2020 ◽  
Vol 80 (2) ◽  
pp. 147-163
Author(s):  
X Liu ◽  
Y Kang ◽  
Q Liu ◽  
Z Guo ◽  
Y Chen ◽  
...  

The regional climate model RegCM version 4.6, developed by the European Centre for Medium-Range Weather Forecasts Reanalysis, was used to simulate the radiation budget over China. Clouds and the Earth’s Radiant Energy System (CERES) satellite data were utilized to evaluate the simulation results based on 4 radiative components: net shortwave (NSW) radiation at the surface of the earth and top of the atmosphere (TOA) under all-sky and clear-sky conditions. The performance of the model for low-value areas of NSW was superior to that for high-value areas. NSW at the surface and TOA under all-sky conditions was significantly underestimated; the spatial distribution of the bias was negative in the north and positive in the south, bounded by 25°N for the annual and seasonal averaged difference maps. Compared with the all-sky condition, the simulation effect under clear-sky conditions was significantly better, which indicates that the cloud fraction is the key factor affecting the accuracy of the simulation. In particular, the bias of the TOA NSW under the clear-sky condition was <±10 W m-2 in the eastern areas. The performance of the model was better over the eastern monsoon region in winter and autumn for surface NSW under clear-sky conditions, which may be related to different levels of air pollution during each season. Among the 3 areas, the regional average biases overall were largest (negative) over the Qinghai-Tibet alpine region and smallest over the eastern monsoon region.


Author(s):  
Xiaoyi Shen ◽  
Chang-Qing Ke ◽  
Bin Cheng ◽  
Wentao Xia ◽  
Mengmeng Li ◽  
...  

AbstractIn August 2018, a remarkable polynya was observed off the north coast of Greenland, a perennial ice zone where thick sea ice cover persists. In order to investigate the formation process of this polynya, satellite observations, a coupled ice-ocean model, ocean profiling data, and atmosphere reanalysis data were applied. We found that the thinnest sea ice cover in August since 1978 (mean value of 1.1 m, compared to the average value of 2.8 m during 1978–2017) and the modest southerly wind caused by a positive North Atlantic Oscillation (mean value of 0.82, compared to the climatological value of −0.02) were responsible for the formation and maintenance of this polynya. The opening mechanism of this polynya differs from the one formed in February 2018 in the same area caused by persistent anomalously high wind. Sea ice drift patterns have become more responsive to the atmospheric forcing due to thinning of sea ice cover in this region.


2006 ◽  
Author(s):  
Grant Matthews ◽  
Kory Priestley ◽  
Norman G. Loeb ◽  
Konstantin Loukachine ◽  
Susan Thomas ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document