scholarly journals The Role of Circulation and Land Surface Conditions in Current and Future Australian Heat Waves

2017 ◽  
Vol 30 (24) ◽  
pp. 9933-9948 ◽  
Author(s):  
Peter B. Gibson ◽  
Andrew J. Pitman ◽  
Ruth Lorenz ◽  
Sarah E. Perkins-Kirkpatrick

Understanding the physical drivers of heat waves is essential for improving short-term forecasts of individual events and long-term projections of heat waves under climate change. This study provides the first analysis of the influence of the large-scale circulation on Australian heat waves, conditional on the land surface conditions. Circulation types, sourced from reanalysis, are used to characterize the different large-scale circulation patterns that drive heat wave events across Australia. The importance of horizontal temperature advection is illustrated in these circulation patterns, and the pattern occurrence frequency is shown to reorganize through different modes of climate variability. It is further shown that the relative likelihood of a particular synoptic situation being associated with a heat wave is strongly modulated by the localized partitioning of available energy between surface sensible and latent heat fluxes (as measured through evaporative fraction) in many regions in reanalysis data. In particular, a several-fold increase in the likelihood of heat wave day occurrence is found during days of reduced evaporative fraction under favorable circulation conditions. The atmospheric circulation and land surface conditions linked to heat waves in reanalysis were then examined in the context of CMIP5 climate model projections. Large uncertainty was found to exist for many regions, especially in terms of the direction of future land surface changes and in terms of the magnitude of atmospheric circulation changes. Efforts to constrain uncertainty in both atmospheric and land surface processes in climate models, while challenging, should translate to more robust regional projections of heat waves.

2020 ◽  
Vol 35 (2) ◽  
pp. 367-377
Author(s):  
Hyun-Ju Lee ◽  
Woo-Seop Lee ◽  
Jong Ahn Chun ◽  
Hwa Woon Lee

Abstract Forecasting extreme events is important for having more time to prepare and mitigate high-impact events because those are expected to become more frequent, intense, and persistent around the globe in the future under the warming atmosphere. This study evaluates the probabilistic predictability of the heat wave index (HWI) associated with large-scale circulation patterns for predicting heat waves over South Korea. The HWI, reflecting heat waves over South Korea, was defined as the vorticity difference at 200 hPa between the South China Sea and northeast Asia. The forecast of up to 15 days from five ensemble prediction systems and the multimodel ensemble has been used to predict the probabilistic HWI during the summers of 2011–15. The ensemble prediction systems consist of different five operational centers, and the forecast skill of the probability of heat waves occurrence was assessed using the Brier skill score (BSS), relative operating characteristics (ROC), and reliability diagram. It was found that the multimodel ensemble is capable of better predicting the large-scale circulation patterns leading to heat waves over South Korea than any other single ensemble system through all forecast lead times. We concluded that the probabilistic forecast of the HWI has promise as a tool to take appropriate and timely actions to minimize the loss of lives and properties from imminent heat waves.


2020 ◽  
Author(s):  
Emmanuel Rouges ◽  
Laura Ferranti ◽  
Holger Kantz ◽  
Florian Pappenberger

<p>                Heat waves have important impacts on society and our environment. In Europe for instance, the summer of 2003 caused upwards of 40000 fatalities. They also impact the crop production, ecosystems, and infrastructures. In a warming climate, heat wave intensity and frequency are likely to increase with potentially more dramatic consequences.</p><p>                Considering this, it is crucial to forecast such extreme events and therefore gain a better understanding of their triggering processes. The determination of these processes requires to identify heat wave patterns (timing and location) together with the correlated large-scale circulation patterns. This will enable to devise early warning systems, that could help mitigate the impact.</p><p>                This work is part of an ongoing PhD project focusing on improving the forecast of heat waves at sub-seasonal time scale. The main objectives are to evaluate the link between large scale weather patterns and severe warm events over Europe and measure current level of predictive skill. The first part will focus on defining an objective criteria to identify heat wave events in the ERA5 reanalaysis dataset from ECMWF. The identification of heat waves depends on three main criteria: temperature threshold, spatial and temporal extension. Meaning that the temperature should exceed a defined threshold over a large enough region and for a long enough period. We will consider daily means as well as maximum and minimum values of 2m temperature. We will identify the circulation patterns (persistent high pressure systems) associated with heat wave events and analyse the key differences with persistent high pressure systems that are not associated with heat waves.</p><p>                <strong>This work is part of the Climate Advanced Forecasting of sub-seasonal Extremes (CAFE) project, funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grand agreement No 813844</strong>.</p>


2013 ◽  
Vol 9 (4) ◽  
pp. 3825-3870
Author(s):  
N. Merz ◽  
C. C. Raible ◽  
H. Fischer ◽  
V. Varma ◽  
M. Prange ◽  
...  

Abstract. Accumulation and aerosol chemistry records from Greenland ice cores offer the potential to reconstruct variability in Northern Hemisphere atmospheric circulation over the last millennia. However, an important prerequisite for a reconstruction is the stable relationship between local accumulation at the ice core site with the respective circulation pattern throughout the reconstruction period. We address this stability issue by using a comprehensive climate model and performing time-slice simulations for the present, the pre-industrial, the early Holocene and the last glacial maximum (LGM). The relationships between accumulation, precipitation and atmospheric circulation are investigated on on various time-scales. The analysis shows that the relationship between local accumulation on the Greenland ice sheet and the large-scale circulation undergoes a significant seasonal cycle. As the weights of the individual seasons change, annual mean accumulation variability is not necessarily related to the same atmospheric circulation patterns during the different climate states. Within a season, local Greenland accumulation variability is indeed linked to a consistent circulation pattern, which is observed for all studied climate periods, even for the LGM, however these circulation patterns are specific for different regions on the Greenland ice sheet. The simulated impact of orbital forcing and changes in the ice-sheet topography on accumulation exhibits strong spatial variability emphasizing that accumulation records from different ice core sites cannot be expected to look alike since they include a distinct local signature. Accumulation changes between different climate periods are dominated by changes in the amount of snowfall and are driven by both thermodynamic and dynamic factors. The thermodynamic impact determines the strength of the hydrological cycle, and warmer temperatures are generally accompanied by an increase in Greenland precipitation. Dynamical drivers of accumulation changes are the large-scale circulation and the local orography having a distinct influence on the local flow characteristic and hence the amount of precipitation deposited in any Greenland region.


2017 ◽  
Vol 30 (19) ◽  
pp. 7827-7845 ◽  
Author(s):  
Bradfield Lyon ◽  
Anthony G. Barnston

Abstract Heat waves are climate extremes having significant environmental and social impacts. However, there is no universally accepted definition of a heat wave. The major goal of this study is to compare characteristics of continental U.S. warm season (May–September) heat waves defined using four different variables—temperature itself and three variables incorporating atmospheric moisture—all for differing intensity and duration requirements. To normalize across different locations and climates, daily intensity is defined using percentiles computed over the 1979–2013 period. The primary data source is the U.S. Historical Climatological Network (USHCN), with humidity data from the North American Regional Reanalysis (NARR) also tested and utilized. The results indicate that heat waves defined using daily maximum temperatures are more frequent and persistent than when based on minimum temperatures, with substantial regional variations in behavior. For all four temperature variables, heat waves based on daily minimum values have greater spatial coherency than for daily maximum values. Regionally, statistically significant upward trends (1979–2013) in heat wave frequency are identified, largest when based on daily minimum values, across variables. Other notable differences in behavior include a higher frequency of heat waves based on maximum temperature itself than for variables that include humidity, while daily minimum temperatures show greater similarity across all variables in this regard. Overall, the study provides a baseline to compare with results from climate model simulations and projections, for examining differing regional and large-scale circulation patterns associated with U.S. summer heat waves and for examining the role of land surface conditions in modulating regional variations in heat wave behavior.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1584
Author(s):  
Ivana Tošić ◽  
Suzana Putniković ◽  
Milica Tošić ◽  
Irida Lazić

In this study, extremely warm and cold temperature events were examined based on daily maximum (Tx) and minimum (Tn) temperatures observed at 11 stations in Serbia during the period 1949–2018. Summer days (SU), warm days (Tx90), and heat waves (HWs) were calculated based on daily maximum temperatures, while frost days (FD) and cold nights (Tn10) were derived from daily minimum temperatures. Absolute maximum and minimum temperatures in Serbia rose but were statistically significant only for Tx in winter. Positive trends of summer and warm days, and negative trends of frost days and cold nights were found. A high number of warm events (SU, Tx90, and HWs) were recorded over the last 20 years. Multiple linear regression (MLR) models were applied to find the relationship between extreme temperature events and atmospheric circulation. Typical atmospheric circulation patterns, previously determined for Serbia, were used as predictor variables. It was found that MLR models gave the best results for Tx90, FD, and Tn10 in winter.


2008 ◽  
Vol 14 ◽  
pp. 243-249 ◽  
Author(s):  
J. Kyselý ◽  
R. Huth

Abstract. Heat waves are among natural hazards with the most severe consequences for human society, including pronounced mortality impacts in mid-latitudes. Recent studies have hypothesized that the enhanced persistence of atmospheric circulation may affect surface climatic extremes, mainly the frequency and severity of heat waves. In this paper we examine relationships between the persistence of the Hess-Brezowsky circulation types conducive to summer heat waves and air temperature anomalies at stations over most of the European continent. We also evaluate differences between temperature anomalies during late and early stages of warm circulation types in all seasons. Results show that more persistent circulation patterns tend to enhance the severity of heat waves and support more pronounced temperature anomalies. Recent sharply rising trends in positive temperature extremes over Europe may be related to the greater persistence of the circulation types, and if similar changes towards enhanced persistence affect other mid-latitudinal regions, analogous consequences and implications for temperature extremes may be expected.


2017 ◽  
Vol 102 ◽  
pp. 214-223 ◽  
Author(s):  
J.M. Correia ◽  
A. Bastos ◽  
M.C. Brito ◽  
R.M. Trigo

2020 ◽  
Vol 212 ◽  
pp. 103456
Author(s):  
Kirstin Schulz ◽  
Karline Soetaert ◽  
Christian Mohn ◽  
Laura Korte ◽  
Furu Mienis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document