scholarly journals Relationships of surface air temperature anomalies over Europe to persistence of atmospheric circulation patterns conducive to heat waves

2008 ◽  
Vol 14 ◽  
pp. 243-249 ◽  
Author(s):  
J. Kyselý ◽  
R. Huth

Abstract. Heat waves are among natural hazards with the most severe consequences for human society, including pronounced mortality impacts in mid-latitudes. Recent studies have hypothesized that the enhanced persistence of atmospheric circulation may affect surface climatic extremes, mainly the frequency and severity of heat waves. In this paper we examine relationships between the persistence of the Hess-Brezowsky circulation types conducive to summer heat waves and air temperature anomalies at stations over most of the European continent. We also evaluate differences between temperature anomalies during late and early stages of warm circulation types in all seasons. Results show that more persistent circulation patterns tend to enhance the severity of heat waves and support more pronounced temperature anomalies. Recent sharply rising trends in positive temperature extremes over Europe may be related to the greater persistence of the circulation types, and if similar changes towards enhanced persistence affect other mid-latitudinal regions, analogous consequences and implications for temperature extremes may be expected.

2020 ◽  
Vol 101-102 (3-4) ◽  
pp. 19-25
Author(s):  
Olena Nashmudinova

Regional climate change in Ukraine in recent decades is accompanied by an increase in the repetitiveness of intense waves, both heat and cold; there is a tendency to increase the frequency of warm winters, but sometimes there are periods with significant decreases in temperature. The aim of the study is to determine the specifics of the formation of air temperature anomalies in the cold period 2010–2019. According to the distribution of the average monthly air temperature at the stations Odessa, Kiev, Kharkiv, Lviv investigated positive and negative deviations from the climate norm. In January, the average monthly air temperature in most cases was above normal, except for 1–3 years. The maximum positive anomaly was 4–5°C in Kyiv and Lviv (2015), the largest negative deviations were 3.8°C. In February, the trend continues – only 2–3 years with negative anomalies, the largest deviations to 3–6°C in 2011 and 2012, and positive deviations maximum in 2016. In March, negative temperature anomalies were observed 3–4 years, with a maximum of 2–3°C in 2018, positive anomalies in 4–6°C were observed in 2014, 2017. Temperatures in November were variable, with the prevailing positive anomaly, a high of 6–8°C in 2010. The distribution of air temperature in December was characterized by positive deviations of a maximum of 5–6°C in 2011, 2015, 2017 and 2019. Months of the greatest positive and negative air temperature anomalies over Europe have been highlighted. Among the colder months, the biggest anomaly stood out in January 2010 and February 2012 to 5–6°C. Among the warm months, the temperature anomaly was observed in February 2016, positive deviations from the norm to 8°C. Heat waves formed in winter with a zonal type of circulation, when warm moist air from the Atlantic shifted across the periphery of the Icelandic low. In March, waves of heat formed in low–gradient fields. Powerful waves of cold over the European sector were mainly formed under the influence of “eastern processes” in the spread of the Siberian anticyclone to Europe. In some years, significant cooling over Ukraine is formed in cyclonic systems with a high–altitude thermobaric field characterized by polar or ultrapolar hollow.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Eva Plavcová ◽  
Jan Kyselý

We study summer heat waves and winter cold spells and their links to atmospheric circulation in an ensemble of EURO-CORDEX RCMs in Central Europe. Results of 19 simulations were compared against observations over 1980–2005. Atmospheric circulation was represented by circulation types and supertypes derived from daily gridded mean sea level pressure. We examined observed and simulated characteristics of hot and cold days (defined using percentiles of temperature anomalies from the mean annual cycle) and heat waves and cold spells (periods of at least three hot/cold days in summer/winter). Although the ensemble of RCMs reproduces on average the frequency and the mean length of heat waves and cold spells relatively well, individual simulations suffer from biases. Most model runs have an enhanced tendency to group hot/cold days into sequences, with several simulations leading to extremely long heat waves or cold spells (the maximum length overestimated by up to 2-3 times). All simulations also produce an extreme winter season with (often considerably) higher number of cold days than in any observed winter. The RCMs reproduce in general the observed circulation significantly conducive to heat waves and cold spells. Zonal flow reduces the probability of temperature extremes in both seasons, while advection of warm/cold air from the south-easterly/north-easterly quadrant plays a dominant role in developing heat waves/cold spells. Because of these links, the simulation of temperature extremes in RCMs is strongly affected by biases in atmospheric circulation. For almost all simulations and all circulation supertypes, the persistence of supertypes is significantly overestimated (even if the frequency of a given supertype is underestimated), which may contribute to development of too-long heat waves/cold spells. We did not identify any substantial improvement in the EURO-CORDEX RCMs in comparison to previous ENSEMBLES RCMs, but the patterns of the biases are generally less conclusive as to general RCMs’ drawbacks.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1584
Author(s):  
Ivana Tošić ◽  
Suzana Putniković ◽  
Milica Tošić ◽  
Irida Lazić

In this study, extremely warm and cold temperature events were examined based on daily maximum (Tx) and minimum (Tn) temperatures observed at 11 stations in Serbia during the period 1949–2018. Summer days (SU), warm days (Tx90), and heat waves (HWs) were calculated based on daily maximum temperatures, while frost days (FD) and cold nights (Tn10) were derived from daily minimum temperatures. Absolute maximum and minimum temperatures in Serbia rose but were statistically significant only for Tx in winter. Positive trends of summer and warm days, and negative trends of frost days and cold nights were found. A high number of warm events (SU, Tx90, and HWs) were recorded over the last 20 years. Multiple linear regression (MLR) models were applied to find the relationship between extreme temperature events and atmospheric circulation. Typical atmospheric circulation patterns, previously determined for Serbia, were used as predictor variables. It was found that MLR models gave the best results for Tx90, FD, and Tn10 in winter.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2334 ◽  
Author(s):  
Xiaogang Dong ◽  
Shiting Zhang ◽  
Junju Zhou ◽  
Jianjun Cao ◽  
Liang Jiao ◽  
...  

Since there are many destructive effects caused by extreme climate events in the Yellow River, it is of great theoretical and practical significance to explore the variations of climatic extremes in this key basin. We used a meteorological dataset from 66 stations within the Yellow River basin (YRB) for the period 1960–2017 to calculate magnitude and frequency of precipitation/temperature extremes. We also analyzed the relationships between the main large-scale atmospheric circulation patterns (ACPs) and precipitation/temperature extremes. The trends in precipitation extremes were nonsignificant, only a few stations were characterized by significantly increasing or decreasing anomalies; this indicates the precipitation intensity may have been strengthened, and the extreme rainfall duration appears to have been reduced during 1960–2017. The trends of magnitudes for “cold” extremes were larger than those for “warm” extremes, changes of trends in frost days were higher than those for summer days, and the trends in increasing warm nights were higher than those of warm days. The influence of the El Niño–Southern Oscillation (ENSO) and Arctic Oscillation (AO) on temperature extremes outweighed the influence of the North Atlantic Oscillation (NAO), Indian Ocean Dipole (IOD), and Pacific Decadal Oscillation (PDO) for the other extreme climate indices. The YRB might be at risk of increased extreme high temperature events, and more attention should be paid to this higher risk of extreme climatic events.


Sign in / Sign up

Export Citation Format

Share Document