Heatwaves over Europe: Identification and connection to large-scale circulation

Author(s):  
Emmanuel Rouges ◽  
Laura Ferranti ◽  
Holger Kantz ◽  
Florian Pappenberger

<p>                Heat waves have important impacts on society and our environment. In Europe for instance, the summer of 2003 caused upwards of 40000 fatalities. They also impact the crop production, ecosystems, and infrastructures. In a warming climate, heat wave intensity and frequency are likely to increase with potentially more dramatic consequences.</p><p>                Considering this, it is crucial to forecast such extreme events and therefore gain a better understanding of their triggering processes. The determination of these processes requires to identify heat wave patterns (timing and location) together with the correlated large-scale circulation patterns. This will enable to devise early warning systems, that could help mitigate the impact.</p><p>                This work is part of an ongoing PhD project focusing on improving the forecast of heat waves at sub-seasonal time scale. The main objectives are to evaluate the link between large scale weather patterns and severe warm events over Europe and measure current level of predictive skill. The first part will focus on defining an objective criteria to identify heat wave events in the ERA5 reanalaysis dataset from ECMWF. The identification of heat waves depends on three main criteria: temperature threshold, spatial and temporal extension. Meaning that the temperature should exceed a defined threshold over a large enough region and for a long enough period. We will consider daily means as well as maximum and minimum values of 2m temperature. We will identify the circulation patterns (persistent high pressure systems) associated with heat wave events and analyse the key differences with persistent high pressure systems that are not associated with heat waves.</p><p>                <strong>This work is part of the Climate Advanced Forecasting of sub-seasonal Extremes (CAFE) project, funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grand agreement No 813844</strong>.</p>

2020 ◽  
Vol 35 (2) ◽  
pp. 367-377
Author(s):  
Hyun-Ju Lee ◽  
Woo-Seop Lee ◽  
Jong Ahn Chun ◽  
Hwa Woon Lee

Abstract Forecasting extreme events is important for having more time to prepare and mitigate high-impact events because those are expected to become more frequent, intense, and persistent around the globe in the future under the warming atmosphere. This study evaluates the probabilistic predictability of the heat wave index (HWI) associated with large-scale circulation patterns for predicting heat waves over South Korea. The HWI, reflecting heat waves over South Korea, was defined as the vorticity difference at 200 hPa between the South China Sea and northeast Asia. The forecast of up to 15 days from five ensemble prediction systems and the multimodel ensemble has been used to predict the probabilistic HWI during the summers of 2011–15. The ensemble prediction systems consist of different five operational centers, and the forecast skill of the probability of heat waves occurrence was assessed using the Brier skill score (BSS), relative operating characteristics (ROC), and reliability diagram. It was found that the multimodel ensemble is capable of better predicting the large-scale circulation patterns leading to heat waves over South Korea than any other single ensemble system through all forecast lead times. We concluded that the probabilistic forecast of the HWI has promise as a tool to take appropriate and timely actions to minimize the loss of lives and properties from imminent heat waves.


2017 ◽  
Vol 30 (24) ◽  
pp. 9933-9948 ◽  
Author(s):  
Peter B. Gibson ◽  
Andrew J. Pitman ◽  
Ruth Lorenz ◽  
Sarah E. Perkins-Kirkpatrick

Understanding the physical drivers of heat waves is essential for improving short-term forecasts of individual events and long-term projections of heat waves under climate change. This study provides the first analysis of the influence of the large-scale circulation on Australian heat waves, conditional on the land surface conditions. Circulation types, sourced from reanalysis, are used to characterize the different large-scale circulation patterns that drive heat wave events across Australia. The importance of horizontal temperature advection is illustrated in these circulation patterns, and the pattern occurrence frequency is shown to reorganize through different modes of climate variability. It is further shown that the relative likelihood of a particular synoptic situation being associated with a heat wave is strongly modulated by the localized partitioning of available energy between surface sensible and latent heat fluxes (as measured through evaporative fraction) in many regions in reanalysis data. In particular, a several-fold increase in the likelihood of heat wave day occurrence is found during days of reduced evaporative fraction under favorable circulation conditions. The atmospheric circulation and land surface conditions linked to heat waves in reanalysis were then examined in the context of CMIP5 climate model projections. Large uncertainty was found to exist for many regions, especially in terms of the direction of future land surface changes and in terms of the magnitude of atmospheric circulation changes. Efforts to constrain uncertainty in both atmospheric and land surface processes in climate models, while challenging, should translate to more robust regional projections of heat waves.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 933
Author(s):  
Fernanda Rodrigues Diniz ◽  
Fábio Luiz Teixeira Gonçalves ◽  
Scott Sheridan

The Metropolitan Region of Sao Paulo (MRSP) is one of the main regions of Brazil that in recent years has shown an increase in the number of days with heat waves, mainly affecting the health of the most sensitive populations, such as the elderly. In this study, we identified the heat waves in the MRSP using three different definitions regarding the maximum daily temperature threshold. To analyze the impact of heat waves on elderly mortality, we used distributed lag nonlinear models (dlnm) and we quantified the heat wave-related excess mortality of elderly people from 1985 to 2005 and made projections for the near future (2030 to 2050) and the distant future (2079–2099) under the climate change scenarios RCP4.5 and RCP8.5 (RCP: Representative Concentration Paths). An important aspect of this research is that for the projections we take into account two assumptions: non-adaptation and adaptation to the future climate. Our projections show that the heat wave-related excess of elderly mortality will increase in the future, being highest when we consider no adaptation, mainly from cardiovascular diseases in women (up to 587 deaths per 100,000 inhabitants per year). This study can be used for public policies to implement preventive and adaptive measures in the MRSP.


2014 ◽  
Vol 53 (1) ◽  
pp. 3-19 ◽  
Author(s):  
Kristen Guirguis ◽  
Alexander Gershunov ◽  
Alexander Tardy ◽  
Rupa Basu

AbstractThis study examines the health impacts of recent heat waves statewide and for six subregions of California: the north and south coasts, the Central Valley, the Mojave Desert, southern deserts, and northern forests. By using canonical correlation analysis applied to daily maximum temperatures and morbidity data in the form of unscheduled hospitalizations from 1999 to 2009, 19 heat waves spanning 3–15 days in duration that had a significant impact on health were identified. On average, hospital admissions were found to increase by 7% on the peak heat-wave day, with a significant impact seen for several disease categories, including cardiovascular disease, respiratory disease, dehydration, acute renal failure, heat illness, and mental health. Statewide, there were 11 000 excess hospitalizations that were due to extreme heat over the period, yet the majority of impactful events were not accompanied by a heat advisory or warning from the National Weather Service. On a regional basis, the strongest health impacts are seen in the Central Valley and the north and south coasts. The north coast contributes disproportionately to the statewide health impact during heat waves, with a 10.5% increase in daily morbidity at heat-wave peak as compared with 8.1% for the Central Valley and 5.6% for the south coast. The temperature threshold at which an impact is seen varies by subregion and timing within the season. These results suggest that heat-warning criteria should consider local percentile thresholds to account for acclimation to local climatological conditions as well as the seasonal timing of a forecast heat wave.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Yahya Darmawan ◽  
Huang-Hsiung Hsu ◽  
Jia-Yuh Yu

This study aims to explore the contrasting characteristics of large-scale circulation that led to the precipitation anomalies over the northern parts of Sumatra Island. Further, the impact of varying the Asian–Australian Monsoon (AAM) was investigated for triggering the precipitation variability over the study area. The moisture budget analysis was applied to quantify the most dominant component that induces precipitation variability during the JJA (June, July, and August) period. Then, the composite analysis and statistical approach were applied to confirm the result of the moisture budget. Using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Anaysis Interim (ERA-Interim) from 1981 to 2016, we identified 9 (nine) dry and 6 (six) wet years based on precipitation anomalies, respectively. The dry years (wet years) anomalies over the study area were mostly supported by downward (upward) vertical velocity anomaly instead of other variables such as specific humidity, horizontal velocity, and evaporation. In the dry years (wet years), there is a strengthening (weakening) of the descent motion, which triggers a reduction (increase) of convection over the study area. The overall downward (upward) motion of westerly (easterly) winds appears to suppress (support) the convection and lead to negative (positive) precipitation anomaly in the whole region but with the largest anomaly over northern parts of Sumatra. The AAM variability proven has a significant role in the precipitation variability over the study area. A teleconnection between the AAM and other global circulations implies the precipitation variability over the northern part of Sumatra Island as a regional phenomenon. The large-scale tropical circulation is possibly related to the PWC modulation (Pacific Walker Circulation).


Circulation ◽  
2017 ◽  
Vol 135 (suppl_1) ◽  
Author(s):  
Yi Wang

Background: The association between heat and hospital admissions is well studied, but in Indiana where the regulatory agencies cites lack of evidence for global climate change, local evidence of such an association is critical for Indiana to mitigate the impact of increasing heat. Methods: Using a distributed-lag non-linear model, we studied the effects of moderate (31.7 °C or 90 th percentile of daily mean apparent temperature (AT)), severe (33.5 °C or 95 th percentile of daily mean apparent temperature (AT)) and extreme (36.4 °C or 99 th percentile of AT) heat on hospital admissions (June-August 2007-2012) for cardiovascular (myocardial infarction, myocardial infarction, heart failure) and heat-related diseases in Indianapolis, Indiana located in Marion County. We also examined the added effects of moderate heat waves (AT above the 90 th percentile lasting 2-6 days), severe heat waves (AT above the 95 th percentile lasting 2-6 days) and extreme heat waves (AT above the 99 th percentile lasting 2-6 days). In sensitivity analysis, we tested robustness of our results to 1) different temperature and lag structures and 2) temperature metrics (daily min, max and diurnal temperature range). Results: The relative risks of moderate heat, relative to 29.2°C (75 th percentile of AT), on admissions for cardiovascular disease (CVD), myocardial infarction (MI), heart failure (HF), and heat-related diseases (HD) were 0.98 (0.67, 1.44), 6.28 (1.48, 26.6), 1.38 (0.81, 2.36) and 1.73 (0.58, 5.11). The relative risk of severe heat on admissions for CVD, MI, HF, and HD were 0.93 (0.60, 1.43), 4.46 (0.85, 23.4), 1.30 (0.72, 2.34) and 2.14 (0.43, 10.7). The relative risk of extreme heat were 0.79 (0.26, 2.39), 0.11 (0.087, 1.32), 0.68 (0.18, 2.61), and 0.32 (0.005, 19.5). We also observed statistically significant added effects of moderate heat waves lasting 4 or 6 days on hospital admission for MI and HD and extreme heat waves lasting 4 days on hospital admissions for HD. Results were strengthened for people older than 65. Conclusions: Moderate heat wave lasting 4-6 days were associated with increased hospital admissions for MI and HD diseases and extreme heat wave lasting 4 days were associated with increased admissions for HD.


2017 ◽  
Author(s):  
Huiting Mao ◽  
Dolly Hall ◽  
Zhuyun Ye ◽  
Ying Zhou ◽  
Dirk Felton ◽  
...  

Abstract. The impact of large-scale circulation on urban gaseous elemental mercury (GEM) was investigated through analysis of 2008–2015 measurement data from an urban site in New York City (NYC), New York, USA. Distinct annual cycles were observed in 2009–2010 with mixing ratios in warm seasons (i.e. spring–summer) 10–20 ppqv (~ 10 %–25 %) higher than in cool seasons (i.e. fall–winter). This annual cycle was disrupted in 2011 by an anomalously strong influence of the North American trough in that warm season and was reproduced in 2014 with annual amplitude enhanced up to ~ 70 ppqv associated with a particularly strong Bermuda High. North American trough axis index (TAI) and intensity index (TII) were used to characterize the effect of the North American trough on NYC GEM especially in winter and summer. The intensity and position of the Bermuda High had a significant impact on GEM in warm seasons supported by a strong correlation (r reaching 0.96, p 


2017 ◽  
Vol 102 ◽  
pp. 214-223 ◽  
Author(s):  
J.M. Correia ◽  
A. Bastos ◽  
M.C. Brito ◽  
R.M. Trigo

2021 ◽  
Author(s):  
Ekaterina Bogdanovich ◽  
Lars Guenther ◽  
Markus Reichstein ◽  
Georg Ruhrmann ◽  
René Orth

<p>Extreme hydro-meteorological events often affect the economy, social life, health, and well-being. One indicator for the impact of extreme events on society is the concurrently increased societal attention. Such increases can help to measure and understand the vulnerability of the society to extreme events, and to evaluate the relevance of an event, which is important for disaster research and risk management. In this study, we analyzed and characterized hydro-meteorological extreme events from a societal impact perspective. In particular, we investigated the impact of heat waves on societal attention in European countries with contrasting climate (Germany, Spain, and Sweden) using Google trends data during 2010–2019. Thus, we seek to answer two general research questions: (i) how and when do extreme events trigger societal attention, (ii) are there temperature thresholds at which societal attention increases? </p><p>To describe heat waves, we used maximum, minimum, average, and apparent temperature, aggregated to a weekly time scale. We analyzed the relationship between temperature and societal attention using piecewise regression to identify potential temperature-related thresholds in societal attention. The threshold is determined as the breaking point between two linear models fitted to data. We determined the corresponding goodness of fit by computing R<sup>2</sup> for each temperature variable. The variable with the highest R<sup>2</sup> is considered as the most influential one.</p><p>The overall relationship between temperature and Google attention to heat waves is significant in all countries and reveals clear temperature thresholds. The variable with the highest explanatory power is the weekly average of the daily maximum temperatures, which accounts for 71% of google attention in Germany, 51 % in Sweden, and 38 % in Spain. For Germany, similar results are found with media attention. In Sweden, with its colder climate, a lower temperature threshold is identified, indicating higher heat vulnerability. No significant impact of temperatures from the previous weeks is found. While further work is needed to improve the understanding of the attention-heat coupling, the demonstrated significant societal attention response to heat waves offers the opportunity to characterize heat waves from an impact perspective using the identified temperature variables, time scales, and thresholds.</p>


2019 ◽  
Vol 11 (12) ◽  
pp. 3270 ◽  
Author(s):  
Lei Ye ◽  
Ke Shi ◽  
Zhuohang Xin ◽  
Chao Wang ◽  
Chi Zhang

Droughts and heat waves both are natural extreme climate events occurring in most parts of the world. To understand the spatio-temporal characteristics of droughts and heat waves in China, we examine changes in droughts, heat waves, and the compound of both during 1961–2017 based on high resolution gridded monthly sc_PDSI and daily temperature data. Results show that North China and Northwest China are the two regions that experience the most frequent droughts, while Central China is the least drought-affected region. Significant drought decreasing trends were mostly observed Qinghai, Xinjiang, and Tibet provinces, while the belt region between Yunnan and Heilongjiang provinces experienced significant drought increasing trends. Heat waves occur more frequently than droughts, and the increase of heat wave occurrence is also more obvious. The increasing of heat wave occurrence since the 2000s has been unprecedented. The compound droughts and heat waves were mild from the 1960s to 1980s, and began to increase in 1990s. Furthermore, the significant increasing trends of the percentage of compound droughts and heat waves to droughts are observed in entire China, and more than 90% drought occurrences are accompanied by one or more heat waves in the 2010s. The results highlight the increased percentage of compound droughts and heat waves and call for improved efforts on assessing the impact of compound extremes, especially in an era of changing climate.


Sign in / Sign up

Export Citation Format

Share Document