scholarly journals The Strength of Low-Cloud Feedbacks and Tropical Climate: A CESM Sensitivity Study

2019 ◽  
Vol 32 (9) ◽  
pp. 2497-2516 ◽  
Author(s):  
Ehsan Erfani ◽  
Natalie J. Burls

Abstract Variability in the strength of low-cloud feedbacks across climate models is the primary contributor to the spread in their estimates of equilibrium climate sensitivity (ECS). This raises the question: What are the regional implications for key features of tropical climate of globally weak versus strong low-cloud feedbacks in response to greenhouse gas–induced warming? To address this question and formalize our understanding of cloud controls on tropical climate, we perform a suite of idealized fully coupled and slab-ocean climate simulations across which we systematically scale the strength of the low-cloud-cover feedback under abrupt 2 × CO2 forcing within a single model, thereby isolating the impact of low-cloud feedback strength. The feedback strength is varied by modifying the stratus cloud fraction so that it is a function of not only local conditions but also global temperature in a series of abrupt 2 × CO2 sensitivity experiments. The unperturbed decrease in low cloud cover (LCC) under 2 × CO2 is greatest in the mid- and high-latitude oceans, and the subtropical eastern Pacific and Atlantic, a pattern that is magnified as the feedback strength is scaled. Consequently, sea surface temperature (SST) increases more in these regions as well as the Pacific cold tongue. As the strength of the low-cloud feedback increases this results in not only increased ECS, but also an enhanced reduction of the large-scale zonal and meridional SST gradients (structural climate sensitivity), with implications for the atmospheric Hadley and Walker circulations, as well as the hydrological cycle. The relevance of our results to simulating past warm climate is also discussed.

2011 ◽  
Vol 11 (17) ◽  
pp. 9053-9065 ◽  
Author(s):  
F. Sun ◽  
A. Hall ◽  
X. Qu

Abstract. In this study, we examine marine low cloud cover variability in the Southeast Pacific and its association with lower-tropospheric stability (LTS) across a spectrum of timescales. On both daily and interannual timescales, LTS and low cloud amount are very well correlated in austral summer (DJF). Meanwhile in winter (JJA), when ambient LTS increases, the LTS–low cloud relationship substantially weakens. The DJF LTS–low cloud relationship also weakens in years with unusually large ambient LTS values. These are generally strong El Niño years, in which DJF LTS values are comparable to those typically found in JJA. Thus the LTS–low cloud relationship is strongly modulated by the seasonal cycle and the ENSO phenomenon. We also investigate the origin of LTS anomalies closely associated with low cloud variability during austral summer. We find that the ocean and atmosphere are independently involved in generating anomalies in LTS and hence variability in the Southeast Pacific low cloud deck. This highlights the importance of the physical (as opposed to chemical) component of the climate system in generating internal variability in low cloud cover. It also illustrates the coupled nature of the climate system in this region, and raises the possibility of cloud feedbacks related to LTS. We conclude by addressing the implications of the LTS–low cloud relationship in the Southeast Pacific for low cloud feedbacks in anthropogenic climate change.


2020 ◽  
Vol 33 (6) ◽  
pp. 2237-2248 ◽  
Author(s):  
Andrew E. Dessler

AbstractThis study investigates potential biases between equilibrium climate sensitivity inferred from warming over the historical period (ECShist) and the climate system’s true ECS (ECStrue). This paper focuses on two factors that could contribute to differences between these quantities. First is the impact of internal variability over the historical period: our historical climate record is just one of an infinity of possible trajectories, and these different trajectories can generate ECShist values 0.3 K below to 0.5 K above (5%–95% confidence interval) the average ECShist. Because this spread is due to unforced variability, I refer to this as the unforced pattern effect. This unforced pattern effect in the model analyzed here is traced to unforced variability in loss of sea ice, which affects the albedo feedback, and to unforced variability in warming of the troposphere, which affects the shortwave cloud feedback. There is also a forced pattern effect that causes ECShist to depart from ECStrue due to differences between today’s transient pattern of warming and the pattern of warming at 2×CO2 equilibrium. Changes in the pattern of warming lead to a strengthening low-cloud feedback as equilibrium is approached in regions where surface warming is delayed: the Southern Ocean, eastern Pacific, and North Atlantic near Greenland. This forced pattern effect causes ECShist to be on average 0.2 K lower than ECStrue (~8%). The net effect of these two pattern effects together can produce an estimate of ECShist as much as 0.5 K below ECStrue.


2021 ◽  
Vol 14 (9) ◽  
pp. 5355-5372
Author(s):  
John G. Virgin ◽  
Christopher G. Fletcher ◽  
Jason N. S. Cole ◽  
Knut von Salzen ◽  
Toni Mitovski

Abstract. The newest iteration of the Canadian Earth System Model (CanESM5.0.3) has an effective climate sensitivity (EffCS) of 5.65 K, which is a 54 % increase relative to the model's previous version (CanESM2 – 3.67 K), and the highest sensitivity of all current models participating in the sixth phase of the coupled model inter-comparison project (CMIP6). Here, we explore the underlying causes behind CanESM5's increased EffCS via comparison of forcing and feedbacks between CanESM2 and CanESM5. We find only modest differences in radiative forcing as a response to CO2 between model versions. We find small increases in the surface albedo and longwave cloud feedback, as well as a substantial increase in the SW cloud feedback in CanESM5. Through the use of cloud area fraction output and cloud radiative kernels, we find that more positive low and non-low shortwave cloud feedbacks – particularly with regards to low clouds across the equatorial Pacific, as well as subtropical and extratropical free troposphere cloud optical depth – are the dominant contributors to CanESM5's increased climate sensitivity. Additional simulations with prescribed sea surface temperatures reveal that the spatial pattern of surface temperature change exerts controls on the magnitude and spatial distribution of low-cloud fraction response but does not fully explain the increased EffCS in CanESM5. The results from CanESM5 are consistent with increased EffCS in several other CMIP6 models, which has been primarily attributed to changes in shortwave cloud feedbacks.


2018 ◽  
Vol 31 (2) ◽  
pp. 641-654 ◽  
Author(s):  
Timothy Andrews ◽  
Mark J. Webb

An atmospheric general circulation model (AGCM) is forced with patterns of observed sea surface temperature (SST) change and those output from atmosphere–ocean GCM (AOGCM) climate change simulations to demonstrate a strong dependence of climate feedback on the spatial structure of surface temperature change. Cloud and lapse rate feedbacks are found to vary the most, depending strongly on the pattern of tropical Pacific SST change. When warming is focused in the southeast tropical Pacific—a region of climatological subsidence and extensive marine low cloud cover—warming reduces the lower-tropospheric stability (LTS) and low cloud cover but is largely trapped under an inversion and hence has little remote effect. The net result is a relatively weak negative lapse rate feedback and a large positive cloud feedback. In contrast, when warming is weak in the southeast tropical Pacific and enhanced in the west tropical Pacific—a strong convective region—warming is efficiently transported throughout the free troposphere. The increased atmospheric stability results in a strong negative lapse rate feedback and increases the LTS in low cloud regions, resulting in a low cloud feedback of weak magnitude. These mechanisms help explain why climate feedback and sensitivity change on multidecadal time scales in AOGCM abrupt4xCO2 simulations and are different from those seen in AGCM experiments forced with observed historical SST changes. From the physical understanding developed here, one should expect unusually negative radiative feedbacks and low effective climate sensitivities to be diagnosed from real-world variations in radiative fluxes and temperature over decades in which the eastern Pacific has lacked warming.


Author(s):  
Timothy A. Myers ◽  
Ryan C. Scott ◽  
Mark D. Zelinka ◽  
Stephen A. Klein ◽  
Joel R. Norris ◽  
...  

2018 ◽  
Vol 45 (9) ◽  
pp. 4438-4445 ◽  
Author(s):  
Tianle Yuan ◽  
Lazaros Oreopoulos ◽  
Steven E. Platnick ◽  
Kerry Meyer

2020 ◽  
Vol 20 (6) ◽  
pp. 3415-3438 ◽  
Author(s):  
Hendrik Andersen ◽  
Jan Cermak ◽  
Julia Fuchs ◽  
Peter Knippertz ◽  
Marco Gaetani ◽  
...  

Abstract. Fog is a defining characteristic of the climate of the Namib Desert, and its water and nutrient input are important for local ecosystems. In part due to sparse observation data, the local mechanisms that lead to fog occurrence in the Namib are not yet fully understood, and to date, potential synoptic-scale controls have not been investigated. In this study, a recently established 14-year data set of satellite observations of fog and low clouds in the central Namib is analyzed in conjunction with reanalysis data in order to identify synoptic-scale patterns associated with fog and low-cloud variability in the central Namib during two seasons with different spatial fog occurrence patterns. It is found that during both seasons, mean sea level pressure and geopotential height at 500 hPa differ markedly between fog/low-cloud and clear days, with patterns indicating the presence of synoptic-scale disturbances on fog and low-cloud days. These regularly occurring disturbances increase the probability of fog and low-cloud occurrence in the central Namib in two main ways: (1) an anomalously dry free troposphere in the coastal region of the Namib leads to stronger longwave cooling of the marine boundary layer, increasing low-cloud cover, especially over the ocean where the anomaly is strongest; (2) local wind systems are modulated, leading to an onshore anomaly of marine boundary-layer air masses. This is consistent with air mass back trajectories and a principal component analysis of spatial wind patterns that point to advected marine boundary-layer air masses on fog and low-cloud days, whereas subsiding continental air masses dominate on clear days. Large-scale free-tropospheric moisture transport into southern Africa seems to be a key factor modulating the onshore advection of marine boundary-layer air masses during April, May, and June, as the associated increase in greenhouse gas warming and thus surface heating are observed to contribute to a continental heat low anomaly. A statistical model is trained to discriminate between fog/low-cloud and clear days based on information on large-scale dynamics. The model accurately predicts fog and low-cloud days, illustrating the importance of large-scale pressure modulation and advective processes. It can be concluded that regional fog in the Namib is predominantly of an advective nature and that fog and low-cloud cover is effectively maintained by increased cloud-top radiative cooling. Seasonally different manifestations of synoptic-scale disturbances act to modify its day-to-day variability and the balance of mechanisms leading to its formation and maintenance. The results are the basis for a new conceptual model of the synoptic-scale mechanisms that control fog and low-cloud variability in the Namib Desert and will guide future studies of coastal fog regimes.


2018 ◽  
Vol 31 (11) ◽  
pp. 4329-4346 ◽  
Author(s):  
Adeyemi A. Adebiyi ◽  
Paquita Zuidema

Abstract Shortwave-absorbing aerosols seasonally cover and interact with an expansive low-level cloud deck over the southeast Atlantic. Daily anomalies of the MODIS low cloud fraction, fine-mode aerosol optical depth (AODf), and six ERA-Interim meteorological parameters (lower-tropospheric stability, 800-hPa subsidence, 600-hPa specific humidity, 1000- and 800-hPa horizontal temperature advection, and 1000-hPa geopotential height) are constructed spanning July–October (2001–12). A standardized multiple linear regression, whereby the change in the low cloud fraction to each component’s variability is normalized by one standard deviation, facilitates comparison between the different variables. Most cloud–meteorology relationships follow expected behavior for stratocumulus clouds. Of interest is the low cloud–subsidence relationship, whereby increasing subsidence increases low cloud cover between 10° and 20°S but decreases it elsewhere. Increases in AODf increase cloudiness everywhere, independent of other meteorological predictors. The cloud–AODf effect is partially compensated by accompanying increases in the midtropospheric moisture, which is associated with decreases in low cloud cover. This suggests that the free-tropospheric moisture affects the low cloud deck primarily through longwave radiation rather than mixing. The low cloud cover is also more sensitive to aerosol when the vertical distance between the cloud and aerosol layer is relatively small, which is more likely to occur early in the biomass burning season and farther offshore. A parallel statistical analysis that does not include AODf finds altered relationships between the low cloud cover changes and meteorology that can be understood through the aerosol cross-correlations with the meteorological predictors. For example, the low cloud–stability relationship appears stronger if aerosols are not explicitly included.


2013 ◽  
Vol 26 (11) ◽  
pp. 3544-3561 ◽  
Author(s):  
A. Gettelman ◽  
J. E. Kay ◽  
J. T. Fasullo

Abstract An ensemble of simulations from different versions of the Community Atmosphere Model in the Community Earth System Model (CESM) is used to investigate the processes responsible for the intermodel spread in climate sensitivity. In the CESM simulations, the climate sensitivity spread is primarily explained by shortwave cloud feedbacks on the equatorward flank of the midlatitude storm tracks. Shortwave cloud feedbacks have been found to explain climate sensitivity spread in previous studies, but the location of feedback differences was in the subtropics rather than in the storm tracks as identified in CESM. The cloud-feedback relationships are slightly stronger in the winter hemisphere. The spread in climate sensitivity in this study is related both to the cloud-base state and to the cloud feedbacks. Simulated climate sensitivity is correlated with cloud-fraction changes on the equatorward side of the storm tracks, cloud condensate in the storm tracks, and cloud microphysical state on the poleward side of the storm tracks. Changes in the extent and water content of stratiform clouds (that make up cloud feedback) are regulated by the base-state vertical velocity, humidity, and deep convective mass fluxes. Within the storm tracks, the cloud-base state affects the cloud response to CO2-induced temperature changes and alters the cloud feedbacks, contributing to climate sensitivity spread within the CESM ensemble.


Sign in / Sign up

Export Citation Format

Share Document