scholarly journals Role of North Indian Ocean Air–Sea Interaction in Summer Monsoon Intraseasonal Oscillation

2018 ◽  
Vol 31 (19) ◽  
pp. 7885-7908 ◽  
Author(s):  
Lei Zhang ◽  
Weiqing Han ◽  
Yuanlong Li ◽  
Eric D. Maloney

Air–sea coupling processes over the north Indian Ocean associated with the Indian summer monsoon intraseasonal oscillation (MISO) are investigated. Observations show that MISO convection anomalies affect underlying sea surface temperature (SST) through changes in surface shortwave radiation and surface latent heat flux. In turn, SST anomalies may also affect the MISO precipitation tendency ( dP/ dt). In particular, warm (cold) SST anomalies can contribute to increasing (decreasing) precipitation rate through enhanced (suppressed) surface convergence associated with boundary layer pressure gradients. These air–sea interaction processes are manifest in a quadrature relation between MISO precipitation and SST anomalies. A local air–sea coupling model (LACM) is formulated based on these observed physical processes. The period of the LACM is proportional to the square root of seasonal mixed layer depth H, assuming other physical parameters remain unchanged. Hence, LACM predicts a relatively short (long) MISO period over the north Indian Ocean during the May–June monsoon developing (July–August monsoon mature) phase when H is shallow (deep). This result is consistent with observed MISO characteristics. A 30-day-period oscillating external forcing is also added to the LACM, representing intraseasonal oscillations propagating from the equatorial Indian Ocean to the north Indian Ocean. It is found that resonance will occur when H is close to 25 m, which significantly enhances the MISO amplitude. This process may contribute to the higher MISO amplitude during the monsoon developing phase compared to the mature phase, which is associated with the seasonal cycle of H.

2009 ◽  
Vol 22 (7) ◽  
pp. 1834-1849 ◽  
Author(s):  
Renguang Wu

Abstract The present study investigates processes for out-of-phase transitions from the Australian summer monsoon (ASM) to the Indian summer monsoon (ISM). Two types of out-of-phase ASM-to-ISM transitions have been identified, depending on the evolution of the Pacific El Niño–Southern Oscillation (ENSO) events. The first type of transition is accompanied by a phase switch of ENSO in boreal spring to early summer. In the second type of transition, ENSO maintains its phase through boreal summer. The direct ENSO forcing plays a primary role for the first type of out-of-phase ASM-to-ISM transition, with complementary roles from the north Indian Ocean sea surface temperature (SST) anomalies that are partly induced by ENSO. The second type of out-of-phase ASM-to-ISM transition involves air–sea interaction processes in the tropical Indian Ocean that generate the north Indian Ocean SST anomalies and contribute to the monsoon transition. The initiation of tropical Indian Ocean air–sea interaction is closely related to ENSO in observations, but could also occur without ENSO according to a coupled general circulation model simulation. Results of numerical simulations substantiate the role of the Indian Ocean air–sea interaction in the out-of-phase ASM-to-ISM transition.


2004 ◽  
Vol 109 (C8) ◽  
pp. n/a-n/a ◽  
Author(s):  
K. N. Babu ◽  
Rashmi Sharma ◽  
Neeraj Agarwal ◽  
Vijay K. Agarwal ◽  
R. A. Weller

Author(s):  
B. Praveen Kumar ◽  
Eric D'Asaro ◽  
N. Sureshkumar ◽  
E. Pattabhi Rama Rao ◽  
M. Ravichandran

AbstractWe use profiles from a Lagrangian Float in the North Indian Ocean to explore the usefulness of Thorpe analysis methods to measure vertical scales and dissipation rates in the ocean surface boundary layer. An rms Thorpe length scale LT and an energy dissipation rate εT were computed by resorting the measured density profiles. These are compared to the mixed layer depth (MLD) computed with different density thresholds, the Monin-Obukhov (MO) length LMO computed from the ERA5 reanalysis values of wind stress and buoyancy flux B0 and dissipation rates ε from historical microstructure data. LT is found to accurately match MLD for small (<0.005 kgm-3) density thresholds, but not for larger thresholds, because these do not detect the warm diurnal layers. We use ξ = LT/|LMO| to classify the boundary layer turbulence during night-time convection. In our data, 90% of points from the Bay of Bengal (Arabian Sea) satisfy ξ < 1 (1 < ξ < 10), indicating that wind forcing is (both wind forcing and convection are) driving the turbulence. Over the measured range of ξ, εT decreases with decreasing ξ, i.e. more wind forcing, while ε increases, clearly showing that ε/εT decreases with increasing ξ. This is explained by a new scaling for ξ ≪ 1, εT = 1.15 B0ξ0.5 compared to the historical scaling ε = 0.64 B0 + 1.76ξ−1. For ξ ≫ 1 we expect ε = εT. Similar calculations may be possible using routine ARGO float and ship data, allowing more detailed global measurements of εT thereby providing large-scale tests of turbulence scaling in boundary layers.


2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Geetha B ◽  
Balachandran S

Tropical Cyclone OCKHI over the North Indian Ocean during 2017 underwent dramatic development and rapid intensification very close to the land - Sri Lanka, extreme South Indian coast and Lakshadweep area during its initial developmental stage and caused extensive damages over these areas. On examining the physical and structural mechanism involved in such development, it is observed that the initial development was associated with axi-symmetrisation of the vortex that could be associated with Vortex Rossby waves near the eyewall. Associated with the expulsion of high vorticity from the centre during asymmetry mixing, there was outward propagation of eddy angular momentum flux in the lower levels that strengthened a low level anticyclone to the northeast of the TC centre which in turn enhanced the cyclonic inflow near the TC centre. The rapid intensification phase was associated with vertical non-uniform heating with upper and lower tropospheric warming associated with latent heat release in convection.  During the mature phase, the system sustained ‘very severe’ intensity even under increasing vertical shear and lower ocean heat flux under the influence of a break in the sub tropical ridge to the north of the system centre that enhanced the poleward outflow in the upper troposphere.


MAUSAM ◽  
2021 ◽  
Vol 44 (1) ◽  
pp. 69-76
Author(s):  
T. K. BALAKRISHNAN ◽  
A. K. JASWAL ◽  
S.S.. SINGH ◽  
H. N. SRIVASTAVA

The spatial distribution and temporal variation of the monthly mean SSTA over the Arabian Sea, Bay of Bengal and the north Indian Ocean were investigated for a set of contrasting years of monsoon over the period 1961-80 for months April through July using Empirical Orthogonal Function (EOF) technique with a view to identify regions that are significantly related to the monsoon rainfall. Over 75% of the total variance is, explained by the first mode EOF. SSTA over the north and northeast Arabian Sea during pre-monsoon months were found to be possible indicators of the ensuing monsoon activity. The higher eigen vectors in May over northeast Arabian Sea may signal good monsoon and vice versa. In June there is a marked contrast in the distribution of SST over the Arabian Sea between the two sets of the years the eastern Arabian Sea IS warmer for the deficient monsoon years while the entire Arabian Sea except over the extreme north Arabian Sea is cool during good monsoon years. There is formation of SSTA over the equatorial Indian Ocean area close to Indonesian island commencing from May which is more marked in June and is positively correlated with seasonal rainfall activity over India.  


MAUSAM ◽  
2021 ◽  
Vol 48 (1) ◽  
pp. 55-64
Author(s):  
D.S. PAI

ABSTRACT. Using the monthly outgoing longwave radiation (OLR) data obtained from NOAA polar orbiting satellites, during the period 1979-92, composite OLR anomalies in respect of good monsoon years (1983 and 1988), bad monsoon years (1982 and 1987 for the case associated with ENSO and 1979 and 1986 separately for the case without ENSO) and normal monsoon years (1980, 1981, 1984, 1985, 1989, 1990, 1991 & 1992) were examined. The computation has been performed over the global tropics (30°N-30°S) bounded between the longitudes 50°E and 130°W (through date line) on 5° longitude × 5° latitude grid. There are significant differences in the spatial distributions of composite OLR anomalies between these four cases from the month of April to September indicating spatial and temporal changes in the organized convective pattern. For the good monsoon years persistent negative anomalies indicating enhanced convective activity were observed over the Indonesian regions, whereas large positive anomalies indicating depressed convective activity were observed over equatorial Pacific just west of date line. During the bad monsoon years above normal convection was observed over Pacific region (ENSO case) and over equatorial Indian Ocean (Non ENSO case). During normal monsoon years the spatial patterns of OLR anomalies were similar to that of good monsoon years, but with weaker anomalies. These observations can be explained through the relative interaction between tropical convergence zone (TCZ) over the Indian sub-continent and that over the north Indian Ocean and Pacific. The eastward shift of the convective activity during El-Nino years can be attributed to shift/reversal of Walker circulation. There are strong signals of OLR anomalies during pre-monsoon months which may be useful in inferring the nature of the subsequent monsoon activity.  


MAUSAM ◽  
2021 ◽  
Vol 49 (3) ◽  
pp. 325-330
Author(s):  
O. P. SINGH

Utilizing the marine meteorological data of the period 1961-81, the sea level pressure (SLP) and sea surface temperature (SST) distributions have been obtained on a 5° grid-mesh over the north Indian Ocean area bounded by  0°- 25°N, 50°- l00°E for each individual year. It has been found that the SLP and SST fields for the month of May provide predictive indications of subsequent summer monsoon rainfall over India. Significant negative correlations have been found between the mean SLPs of May over the latitudinal belts 5°-10°, 10°- 15°, 15°-20° and 20°-25°N of Arabian Sea and Bay of Bengal and all India rainfall departures of succeeding summer monsoon season. The mean SST gradient over the Arabian Sea between 7.5°- 17 .5°N during May has been found to have significant positive correlation with all India rainfall of subsequent monsoon. The study suggests that certain functions of SLP and SST of May over the north Indian Ocean can prove to be useful predictors for subsequent summer monsoon rainfall over India.


MAUSAM ◽  
2022 ◽  
Vol 45 (3) ◽  
pp. 205-212
Author(s):  
R. K. VERMA

(iloh,tlcurr("!,1111111 ll111p .o; uflhe SlIllll1lt" r mUn!\4 lOn prt>cipil:lliull anomalies a nti St"a SU l f.IC(" Tt"mpt"1 a1lln"' (SST) a nUllul!it'.'i are pTt'St'IlI("d . n lir1 ) -)l' /u (1950..1479) rime St' 1; ("S uf 11l0n...nnn ind("x b co rn' l a h~d ....; Ih Iht"SST tillll' Sl'riCS al t"nch 1° ;<2° latitLIl1co! u nl:iluJt" box uf th t" \\(1(111 (>I,:eans usi ng COADS (Comprehensive O..:eanAllno...pl1("fl." Dala S('1)dn ta ttl "3riOUS timc IJgs o f lUonth s (i.t' .. l1luI11 h,'S of year s p recedi ng 'lI1.1 conc urrcnI lu Ihe1ll011Stllll1-)l'at) , Ctl lTclal ion..mups :'I ll' pn.-pUTl,.f 111111 Illaly"I'" 1(1 i.lclltify Il' IN."Oll lle ct it ln "-' Ilf llln ll....oon pTt'I,:ipil<ttiunwilh glubal S ~Ts.It is I'olin.! th ai tlll' lag,orrelatiuns .... ilh SST (Will 1:('01(31 and t'ilstt"m t'lluHt orial Padlic (Ninu-rl'l!inniliresuggl·..liw of IWlI I>p t' S o f inlt"raetjuns .....ith Ihe munsoun. The first on e, .... h il.:h sho ws pmili\'c <:orre lnlio n of summermonsoon pf('\.-ipililtion anoll1alit"s ",i lh Ihe ct"nlral and l":Jsl ..-mequaturial P<lciftc SST nnoUlal ies aboul a yea r be forelilt" 1l10 nsollfl. sUggl°.!>1Sthat lhe monsoon which follo ws abmlt a )'t'lir la ll'r ur tX'currence ofwaml t"pisode of EI..Nin~Suut hem Oscillatiun (ENSO) is generally ....-eltc It is also suggestetJ Ihal this inleract io n might be taki ng placelhruugh Ihe in llue nce or nOr1h em hemisp here int er tempera tures. Th e seco nd I)-PC of inleraclion of equ alorialPaci fic SST ....i lh mon soon is revealed through the strung n~al ive co rrela tio ns bqinning befo re lh e summer monsoon an d continuing ....; lh g~ a l er magnitud e an d o~ r ....i der extent. suuest ing th ai a .....arm SST anomaly j ust precedineanll concurrent to monsoon ~aso n weaken s th e monsson.AiNt"li intcf<n'lions bctween Ihe Indian Ocean and monsoon are also emph a si ~d in the anal ysis. Two key~ginns are ide nt ified. Th e cen tra l Indian Ocun south o f th e equalor shoW!strong positive corre la tions during (helalt' no n hl'm ",inler a nd spring. Th e other key Tq!'ion is in the north Ind ian Geran. Th e correlations are significanllynt'ga li\'e. Some teleconnections with th e Atlantic basin are also revealed which are ralhe rdifficuh to explain but ma yfind usefu l ap plications in monitoring and long-range forecas line of the monsoon.


Sign in / Sign up

Export Citation Format

Share Document