idealized modeling
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 6)

H-INDEX

10
(FIVE YEARS 0)

Ocean Science ◽  
2021 ◽  
Vol 17 (6) ◽  
pp. 1563-1583
Author(s):  
Simon Barbot ◽  
Florent Lyard ◽  
Michel Tchilibou ◽  
Loren Carrere

Abstract. The forthcoming SWOT altimetric missions aim to resolve the mesoscale with an unprecedented spatial resolution and swath. However, high-frequency processes, such as tides, are undersampled in time and aliased onto lower frequencies, so they need to be corrected properly. Unlike barotropic tides, internal tides (ITs) are not completely stationary and have significant temporal variability due to their interactions with the ocean circulation and the stratification variability. Stratification changes impact both the generation and the propagation of ITs. The present study proposes a methodology to quantify the impacts of background stratification using a clustering method for the classification of a broad range of stratification and idealized modeling of ITs in the frequency domain. The methodology is successfully tested in the western equatorial Atlantic and in the Bay of Biscay. For the western equatorial Atlantic, a single pycnocline is observed and only the two first vertical modes of ITs have significant amplitudes. With no variation in the stratification intensity, the variation in the depth of this single pycnocline linearly impacts the elevation amplitude, energy fluxes and surface wavelength of the two modes. In the Bay of Biscay, there is a permanent deep pycnocline and secondary seasonal pycnoclines near the surface. No proxy have been found to describe the changes in ITs, so a seasonal climatology is explored. The seasonality of the stratification strongly affects the elevation amplitudes as well as the energy fluxes of modes 1, 2 and 3. The distribution of the modes vary with the background stratification, changing the horizontal scales of the ITs.





2020 ◽  
Author(s):  
Jose Rodriguez-Martinez ◽  
Mohammad Marvi-Mashhadi

In this paper we have investigated, using finite element calculations performed in ABAQUS/Explicit [1], the effect of ab initio geometric imperfections in the development of multiple necking patterns in ductile rings subjected to dynamic expansion. Specifically, we have extended the work of Rodríguez-Martínez et al. [33], who studied the formation of necks in rings with sinusoidal spatial perturbations of predefined amplitude and constant wavelength, by considering specimens with random distributions of perturbations of varying amplitude and wavelength. The idea, which is based on the work of El Maï et al. [4], is to provide an idealized modeling of the surface defects and initial roughness of the rings and explore their effect on the collective behavior and spacing of the necks. The material behavior has been modeled with von Mises plasticity and constant yield stress, and the finite element simulations have been performed for expanding velocities ranging from 10 m/s to 1000 m/s, as in ref. [33]. For each speed, we have performed calculations varying the number of imperfections in the ring from 5 to 150. In order to obtain statistically significant results, for each number of imperfections, the computations have been run with five random distributions of imperfection wavelengths. For a small number of imperfections, the variability in the wavelengths distribution is large, which makes the imperfections play a major role in the necking pattern, largely controlling the spacing and growth rate of the necks. As the number of imperfections increases, the variability in the wavelengths distribution decreases, giving rise to an array of more regularly spaced necks which grow at more similar speed. A key outcome is to show that, for a large number of imperfections, the number of necks formed in the ring comes closer to the number of necks obtained in the absence of ab initio geometric imperfections.



Author(s):  
Annareli Morales ◽  
Derek J. Posselt ◽  
Hugh Morrison

AbstractThis study applies an idealized modeling framework, alongside a Bayesian Markov chain Monte Carlo (MCMC) algorithm, to explore which combinations of upstream environmental conditions and cloud microphysical parameter values can produce a particular precipitation distribution over an idealized two-dimensional, bell-shaped mountain. Simulations focus on orographic precipitation produced when an atmospheric river interacts with topography. MCMC-based analysis reveals that different combinations of parameter values produce a similar precipitation distribution, with the most influential parameters being relative humidity (RH), horizontal wind speed (U), surface potential temperature (θsfc), and the snow fallspeed coefficient (As). RH, U, and As exhibit inter-dependence: changes in one or more of these factors can be mitigated by compensating changes in the other(s) to produce similar orographic precipitation rates. The results also indicate that the parameter sensitivities and relationships can vary for spatial sub-regions and given different environmental conditions. In particular, high θsfc values are more likely to produce the target precipitation rate and spatial distribution, and thus the ensemble of simulations shows a preference for liquid precipitation at the surface. The results presented here highlight the complexity of orographic precipitation controls, and have implications for flood and water management, observational efforts, and climate change.



2019 ◽  
Vol 20 (5) ◽  
pp. e894
Author(s):  
Yuan‐Chun Zhang ◽  
Shen‐Ming Fu ◽  
Jian‐Hua Sun ◽  
Rui Fu ◽  
Shuang‐Long Jin ◽  
...  


2018 ◽  
Vol 146 (11) ◽  
pp. 3773-3800 ◽  
Author(s):  
David R. Ryglicki ◽  
Joshua H. Cossuth ◽  
Daniel Hodyss ◽  
James D. Doyle

Abstract A satellite-based investigation is performed of a class of tropical cyclones (TCs) that unexpectedly undergo rapid intensification (RI) in moderate vertical wind shear between 5 and 10 m s−1 calculated as 200–850-hPa shear. This study makes use of both infrared (IR; 11 μm) and water vapor (WV; 6.5 μm) geostationary satellite data, the Statistical Hurricane Prediction Intensity System (SHIPS), and model reanalyses to highlight commonalities of the six TCs. The commonalities serve as predictive guides for forecasters and common features that can be used to constrain and verify idealized modeling studies. Each of the TCs exhibits a convective cloud structure that is identified as a tilt-modulated convective asymmetry (TCA). These TCAs share similar shapes, upshear-relative positions, and IR cloud-top temperatures (below −70°C). They pulse over the core of the TC with a periodicity of between 4 and 8 h. Using WV satellite imagery, two additional features identified are asymmetric warming/drying upshear of the TC relative to downshear, as well as radially thin arc-shaped clouds on the upshear side. The WV brightness temperatures of these arcs are between −40° and −60°C. All of the TCs are sheared by upper-level anticyclones, which limits the strongest environmental winds to near the tropopause.



2018 ◽  
Vol 123 (9) ◽  
pp. 2070-2086 ◽  
Author(s):  
G. H. P. Campmans ◽  
P. C. Roos ◽  
H. J. Vriend ◽  
S. J. M. H. Hulscher


2018 ◽  
Vol 64 (246) ◽  
pp. 675-688 ◽  
Author(s):  
JOHN ERICH CHRISTIAN ◽  
MICHELLE KOUTNIK ◽  
GERARD ROE

ABSTRACTThe widespread retreat of mountain glaciers is a striking emblem of recent climate change. Yet mass-balance observations indicate that many glaciers are out of equilibrium with current climate, meaning that observed retreats do not show the full response to warming. This is a fundamental consequence of glacier dynamics: mountain glaciers typically have multidecadal response timescales, and so their response lags centennial-scale climate trends. A substantial difference between transient and equilibrium glacier length persists throughout the warming period; we refer to this length difference as ‘disequilibrium’. Forcing idealized glacier geometries with gradual warming shows that the glacier response timescale fundamentally governs the evolution of disequilibrium. Comparing a hierarchy of different glacier models suggests that accurate estimates of ice thickness and climatology, which control the timescale, are more important than higher order ice dynamics for capturing disequilibrium. Current glacier disequilibrium has previously been estimated for a selection of individual glaciers; our idealized modeling shows that sustained disequilibrium is a fundamental response of glacier dynamics, and is robust across a range of glacier geometries. This implies that many mountain glaciers are committed to additional, kilometer-scale retreats, even without further warming. Disequilibrium must also be addressed when calibrating glacier models used for climate reconstructions and projections of retreat in response to future warming.



Sign in / Sign up

Export Citation Format

Share Document