scholarly journals Inactive Period of Western North Pacific Tropical Cyclone Activity in 1998–2011

2013 ◽  
Vol 26 (8) ◽  
pp. 2614-2630 ◽  
Author(s):  
Kin Sik Liu ◽  
Johnny C. L. Chan

Abstract Tropical cyclone (TC) activity over the western North Pacific (WNP) exhibits a significant interdecadal variation during 1960–2011, with two distinct active and inactive periods each. This study examines changes in TC activity and atmospheric conditions in the recent inactive period (1998–2011). The overall TC activity shows a significant decrease, which is partly related to the decadal variation of TC genesis frequency in the southeastern part of the WNP and the downward trend of TC genesis frequency in the main development region. The investigation on the factors responsible for the low TC activity mainly focuses on the effect of vertical wind shear and subtropical high on multidecadal time scales. A vertical wind shear index, defined as the mean magnitude of the difference of the 200- and 850-hPa horizontal zonal winds (10°–17.5°N, 150°E–180°) averaged between June and October, is highly correlated with the annual TC number and shows a significant interdecadal variation. Positive anomalies of vertical wind shear are generally found in the eastern part of the tropical WNP during this inactive period. A subtropical high area index, calculated as the area enclosed by the 5880-gpm line of the June–October 500-hPa geopotential height (0°–40°N, 100°E–180°), shows a significant upward trend. A high correlation is also found between this index and the annual TC number, and a stronger-than-normal subtropical high is generally observed during this inactive period. The strong vertical wind shear and strong subtropical high observed during 1998–2011 together apparently lead to unfavorable atmospheric conditions for TC genesis and hence the low TC activity during the period.

2012 ◽  
Vol 25 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Liguang Wu ◽  
Haikun Zhao

Abstract The study of the impact of global warming on tropical cyclone (TC) intensity is subject to uncertainty in historical datasets, especially in the western North Pacific (WNP) basin, where conflicting results have been found with the TC datasets archived in different organizations. In this study the basinwide TC intensity in the WNP basin is derived dynamically with a TC intensity model, based on the track data from the Joint Typhoon Warning Center (JTWC), the Regional Specialized Meteorological Center (RSMC) of Tokyo, and the Shanghai Typhoon Institute (STI) of the China Meteorological Administration. The dynamically derived TC intensity is compared to the three datasets and used to investigate trends in TC intensity. The associated contributions of changes in SST, vertical wind shear, and prevailing tracks are also examined. The evolution of the basinwide TC intensity in the JTWC best-track dataset can be generally reproduced over the period 1975–2007. Dynamically derived data based on the JTWC, RSMC, and STI track datasets all show an increasing trend in the peak intensity and frequency of intense typhoons, mainly because of the combined effect of changes in SST and vertical wind shear. This study suggests that the increasing intensity trend in the JTWC dataset is real, but that it may be overestimated. In contrast, the TC intensity trends in the RSMC and STI intensity datasets are dynamically inconsistent. Numerical simulations also suggest that the frequency of intense typhoons is more sensitive to changes in SST and vertical wind shear than the peak and average intensities defined in previous studies.


2015 ◽  
Vol 28 (9) ◽  
pp. 3806-3820 ◽  
Author(s):  
Xidong Wang ◽  
Chunzai Wang ◽  
Liping Zhang ◽  
Xin Wang

Abstract This study investigates the variation of tropical cyclone (TC) rapid intensification (RI) in the western North Pacific (WNP) and its relationship with large-scale climate variability. RI events have exhibited strikingly multidecadal variability. During the warm (cold) phase of the Pacific decadal oscillation (PDO), the annual RI number is generally lower (higher) and the average location of RI occurrence tends to shift southeastward (northwestward). The multidecadal variations of RI are associated with the variations of large-scale ocean and atmosphere variables such as sea surface temperature (SST), tropical cyclone heat potential (TCHP), relative humidity (RHUM), and vertical wind shear (VWS). It is shown that their variations on multidecadal time scales depend on the evolution of the PDO phase. The easterly trade wind is strengthened during the cold PDO phase at low levels, which tends to make equatorial warm water spread northward into the main RI region rsulting from meridional ocean advection associated with Ekman transport. Simultaneously, an anticyclonic wind anomaly is formed in the subtropical gyre of the WNP. This therefore may deepen the depth of the 26°C isotherm and directly increase TCHP over the main RI region. These thermodynamic effects associated with the cold PDO phase greatly support RI occurrence. The reverse is true during the warm PDO phase. The results also indicate that the VWS variability in the low wind shear zone along the monsoon trough may not be critical for the multidecadal modulation of RI events.


2007 ◽  
Vol 20 (22) ◽  
pp. 5497-5509 ◽  
Author(s):  
Kerry Emanuel

Abstract Revised estimates of kinetic energy production by tropical cyclones in the Atlantic and western North Pacific are presented. These show considerable variability on interannual-to-multidecadal time scales. In the Atlantic, variability on time scales of a few years and more is strongly correlated with tropical Atlantic sea surface temperature, while in the western North Pacific, this correlation, while still present, is considerably weaker. Using a combination of basic theory and empirical statistical analysis, it is shown that much of the variability in both ocean basins can be explained by variations in potential intensity, low-level vorticity, and vertical wind shear. Potential intensity variations are in turn factored into components related to variations in net surface radiation, thermodynamic efficiency, and average surface wind speed. In the Atlantic, potential intensity, low-level vorticity, and vertical wind shear strongly covary and are also highly correlated with sea surface temperature, at least during the period in which reanalysis products are considered reliable. In the Pacific, the three factors are not strongly correlated. The relative contributions of the three factors are quantified, and implications for future trends and variability of tropical cyclone activity are discussed.


2013 ◽  
Vol 26 (20) ◽  
pp. 7981-7991 ◽  
Author(s):  
Hye-Mi Kim ◽  
Myong-In Lee ◽  
Peter J. Webster ◽  
Dongmin Kim ◽  
Jin Ho Yoo

Abstract The relationship between El Niño–Southern Oscillation (ENSO) and tropical storm (TS) activity over the western North Pacific Ocean is examined for the period from 1981 to 2010. In El Niño years, TS genesis locations are generally shifted to the southeast relative to normal years and the passages of TSs tend to recurve to the northeast. TSs of greater duration and more intensity during an El Niño summer induce an increase of the accumulated tropical cyclone kinetic energy (ACE). Based on the strong relationship between the TS properties and ENSO, a probabilistic prediction for seasonal ACE is investigated using a hybrid dynamical–statistical model. A statistical relationship is developed between the observed ACE and large-scale variables taken from the ECMWF seasonal forecast system 4 hindcasts. The ACE correlates positively with the SST anomaly over the central to eastern Pacific and negatively with the vertical wind shear near the date line. The vertical wind shear anomalies over the central and western Pacific are selected as predictors based on sensitivity tests of ACE predictive skill. The hybrid model performs quite well in forecasting seasonal ACE with a correlation coefficient between the observed and predicted ACE at 0.80 over the 30-yr period. A relative operating characteristic analysis also indicates that the ensembles have significant probabilistic skill for both the above-normal and below-normal categories. By comparing the ACE prediction over the period from 2003 to 2011, the hybrid model appears more skillful than the forecast from the Tropical Storm Risk consortium.


2015 ◽  
Vol 143 (9) ◽  
pp. 3434-3453 ◽  
Author(s):  
Yuqing Wang ◽  
Yunjie Rao ◽  
Zhe-Min Tan ◽  
Daria Schönemann

Abstract The effect of vertical wind shear (VWS) between different pressure levels on TC intensity change is statistically analyzed based on the best track data of tropical cyclones (TCs) in the western North Pacific (WNP) from the Joint Typhoon Warning Center (JTWC) and the ECMWF interim reanalysis (ERA-Interim) data during 1981–2013. Results show that the commonly used VWS measure between 200 and 850 hPa is less representative of the attenuating deep-layer shear effect than that between 300 and 1000 hPa. Moreover, the authors find that the low-level shear between 850 (or 700) and 1000 hPa is more negatively correlated with TC intensity change than any deep-layer shear during the active typhoon season, whereas deep-layer shear turns out to be more influential than low-level shear during the remaining less active seasons. Further analysis covering all seasons exhibits that a TC has a better chance to intensify than to decay when the deep-layer shear is lower than 7–9 m s−1 and the low-level shear is below 2.5 m s−1. The probability for TCs to intensify and undergo rapid intensification (RI) increases with decreasing VWS and increasing sea surface temperature (SST). TCs moving at slow translational speeds (less than 3 m s−1) intensify under relatively weaker VWS than TCs moving at intermediate translational speeds (3–8 m s−1). The probability of RI becomes lower than that of rapid decaying (RD) when the translational speed is larger than 8 m s−1. Most TCs tend to decay when the translational speed is larger than 12 m s−1 regardless of the shear condition.


2020 ◽  
Vol 148 (11) ◽  
pp. 4415-4434
Author(s):  
Shu-Jeng Lin ◽  
Kun-Hsuan Chou

AbstractThis study examines the characteristics of tropical cyclone (TC) lightning distribution and its relationship with TC intensity and environmental vertical wind shear (VWS) over the western North Pacific. It uses data from the World Wide Lightning Location Network and operational global analysis data from National Centers for Environmental Prediction Final Analysis for 230 TCs during 2005–17. The spatial distribution of TC lightning frequency and normalized lightning rate demonstrates that the VWS dominates the azimuthal distribution of the lightning. The flashes are active in the downshear-left side of the inner core and the downshear-right side of the outer region. TC lightning distribution for various VWS strengths and TC intensities are further investigated. As VWS increases, the flashes of lightning become more asymmetric and exhibit a higher proportion at the outer region of the downshear side. Moreover, the same features occur as TC intensity decreases. A series of composite analyses indicated that stronger TCs with weaker VWS exhibit a more compact and symmetric lightning distribution, whereas weaker TCs with stronger VWS have a more asymmetric lightning distribution. Furthermore, the TC lightning distribution and its association with TC intensity changes are also examined for three lead times. Results show that among the composite analyses of five TC intensity changes, the lightning distribution for rapid intensification type exhibits more inner-core lightning and is more axisymmetric than the distributions for other categories. These features result from favorable environmental conditions comprising greater upper-level divergence, sea surface temperature, maximum potential intensity, and weaker vertical wind shear.


2018 ◽  
Vol 31 (19) ◽  
pp. 8163-8179 ◽  
Author(s):  
Haikun Zhao ◽  
Xingyi Duan ◽  
G. B. Raga ◽  
Philip J. Klotzbach

A significant increase in the proportion of tropical cyclones undergoing rapid intensification at least once during their lifetime (RITCs) over the western North Pacific (WNP) is observed since 1998 when an abrupt climate regime shift occurred. Changes of large-scale atmospheric and oceanic conditions affecting TC activity are compared between two subperiods: one before and one since 1998. Results suggest that both a significant decrease in the number of TCs and a nearly unchanged number of RITCs since 1998 caused a significant increase in the frequency of RITCs. The decrease in TC numbers is likely driven by considerably increased vertical wind shear and decreased low-level vorticity. In contrast, the unchanged RITC counts and thus increased ratio of RITCs during the recent decades are largely attributed to the dominance of a more conducive ocean environment with increased TC heat potential and warmer sea surface temperature anomalies. These associated decadal changes are closely associated with the recent climate regime shift. During the recent decades with a mega–La Niña–like pattern, stronger easterly trade winds have caused increased vertical wind shear and a weakened monsoon trough, thus hampering TC formation ability over the WNP. In addition, a steeper thermocline slope that hampered the eastward migration of warm water along the equatorial Pacific has generated a more favorable thermodynamic environment supporting TC rapid intensification over the WNP.


Sign in / Sign up

Export Citation Format

Share Document