scholarly journals A Climatological Assessment of Intense Extratropical Cyclones from the Potential Vorticity Perspective

2019 ◽  
Vol 32 (8) ◽  
pp. 2369-2380 ◽  
Author(s):  
Christian Seiler

Extratropical cyclones (ETCs) are known to intensify due to three vertically interacting positive potential vorticity perturbations that are associated with potential temperature anomalies close to the surface (θB), condensational heating in the lower-level atmosphere (qsat), and stratospheric intrusion in the upper-level atmosphere (qtr). This study presents the first climatological assessment of how much each of these three mechanisms contributes to the intensity of extreme ETCs. Using relative vorticity at 850 hPa as a measure of ETC intensity, results show that in about half of all cases the largest contributions during maximum ETC intensity are associated with qsat (53% of all ETCs), followed by qtr (36%) and θB (11%). The relative frequency of storms that are dominated by qsat is higher 1) during warmer months (61% of all ETCs during warmer months) compared to colder months (50%) and 2) in the Pacific (56% of all ETCs in the Pacific) compared to the Atlantic (46%). The relative frequency of ETCs that are dominated by θB is larger 1) during colder months (13%) compared to warmer months (3%), 2) in the Atlantic (15%) compared to the Pacific (8%), and 3) in western (11%–20%) compared to eastern ocean basins (4%–9%). These findings are based on piecewise potential vorticity inversion conducted for intense ETCs that occurred from 1980 to 2016 in the Northern Hemisphere (3273 events; top 7%). The results may serve as a baseline for evaluating ETC biases and uncertainties in global climate models.

2012 ◽  
Vol 69 (2) ◽  
pp. 725-740 ◽  
Author(s):  
Jana Čampa ◽  
Heini Wernli

Abstract Development of extratropical cyclones can be seen as an interplay of three positive potential vorticity anomalies: an upper-level stratospheric intrusion, low-tropospheric diabatically produced potential vorticity (PV), and a warm anomaly at the surface acting as a surrogate PV anomaly. This study, based on the interim ECMWF Re-Analysis (ERA-Interim) dataset, quantifies the amplitude of the PV anomalies of mature extratropical cyclones in different regions in the Northern Hemisphere on a climatological basis. A tracking algorithm is applied to sea level pressure (SLP) fields to identify cyclone tracks. Surface potential temperature anomalies Δθ and vertical profiles of PV anomalies ΔPV are calculated at the time of the cyclones’ minimum SLP in a vertical cylinder around the surface cyclone center. To compare the cyclones’ characteristics they are grouped according to their location and intensity. Composite ΔPV profiles are calculated for each region and intensity class at the time of minimum SLP and during the cyclone intensification phase. In the mature stage all three anomalies are on average larger for intense than for weak winter cyclones [e.g., 0.6 versus 0.2 potential vorticity units (PVU; 1 PVU = 10−6 K kg−1 m2 s−1) at lower levels, and 1.5 versus 0.5 PVU at upper levels]. The regional variability of the cyclones’ vertical structure and the profile evolution is prominent (cyclones in some regions are more sensitive to the amplitude of a particular anomaly than in other regions). Values of Δθ and low-level ΔPV are on average larger in the western parts of the oceans than in the eastern parts. Results for summer are qualitatively similar, except for distinctively weaker surface Δθ values.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kara J. Pitman ◽  
Jonathan W. Moore ◽  
Matthias Huss ◽  
Matthew R. Sloat ◽  
Diane C. Whited ◽  
...  

AbstractGlacier retreat poses risks and benefits for species of cultural and economic importance. One example is Pacific salmon (Oncorhynchus spp.), supporting subsistence harvests, and commercial and recreational fisheries worth billions of dollars annually. Although decreases in summer streamflow and warming freshwater is reducing salmon habitat quality in parts of their range, glacier retreat is creating new streams and lakes that salmon can colonize. However, potential gains in future salmon habitat associated with glacier loss have yet to be quantified across the range of Pacific salmon. Here we project future gains in Pacific salmon freshwater habitat by linking a model of glacier mass change for 315 glaciers, forced by five different Global Climate Models, with a simple model of salmon stream habitat potential throughout the Pacific Mountain ranges of western North America. We project that by the year 2100 glacier retreat will create 6,146 (±1,619) km of new streams accessible for colonization by Pacific salmon, of which 1,930 (±569) km have the potential to be used for spawning and juvenile rearing, representing 0 to 27% gains within the 18 sub-regions we studied. These findings can inform proactive management and conservation of Pacific salmon in this era of rapid climate change.


2020 ◽  
Vol 33 (12) ◽  
pp. 5081-5101
Author(s):  
Jiabao Wang ◽  
Hyemi Kim ◽  
Daehyun Kim ◽  
Stephanie A. Henderson ◽  
Cristiana Stan ◽  
...  

AbstractIn an assessment of 29 global climate models (GCMs), Part I of this study identified biases in boreal winter MJO teleconnections in anomalous 500-hPa geopotential height over the Pacific–North America (PNA) region that are common to many models: an eastward shift, a longer persistence, and a larger amplitude. In Part II, we explore the relationships of the teleconnection metrics developed in Part I with several existing and newly developed MJO and basic state (the mean subtropical westerly jet) metrics. The MJO and basic state diagnostics indicate that the MJO is generally weaker and less coherent and propagates faster in models compared to observations. The mean subtropical jet also exhibits notable biases such as too strong amplitude, excessive eastward extension, or southward shift. The following relationships are found to be robust among the models: 1) models with a faster MJO propagation tend to produce weaker teleconnections; 2) models with a less coherent eastward MJO propagation tend to simulate more persistent MJO teleconnections; 3) models with a stronger westerly jet produce stronger and eastward shifted MJO teleconnections; 4) models with an eastward extended jet produce an eastward shift in MJO teleconnections; and 5) models with a southward shifted jet produce stronger MJO teleconnections. The results are supported by linear baroclinic model experiments. Our results suggest that the larger amplitude and eastward shift biases in GCM MJO teleconnections can be attributed to the biases in the westerly jet, and that the longer persistence bias is likely due to the lack of coherent eastward MJO propagation.


2020 ◽  
Vol 125 (11) ◽  
Author(s):  
Kristopher B. Karnauskas ◽  
Julie Jakoboski ◽  
T. M. Shaun Johnston ◽  
W. Brechner Owens ◽  
Daniel L. Rudnick ◽  
...  

2020 ◽  
Author(s):  
Reinhard Schiemann ◽  
Panos Athanasiadis ◽  
David Barriopedro ◽  
Francisco Doblas-Reyes ◽  
Katja Lohmann ◽  
...  

Abstract. Global Climate Models (GCMs) are known to suffer from biases in the simulation of atmospheric blocking, and this study provides an assessment of how blocking is represented by the latest generation of GCMs. It is evaluated (i) how historical CMIP6 (Climate Model Intercomparison Project Phase 6) simulations perform compared to CMIP5 simulations, and (ii) how horizontal model resolution affects the simulation of blocking in the CMIP6-HighResMIP (PRIMAVERA) model ensemble, which is designed to address this type of question. Two blocking indices are used to evaluate the simulated mean blocking frequency and blocking persistence for the Euro-Atlantic and Pacific regions in winter and summer against the corresponding estimates from atmospheric reanalysis data. There is robust evidence that CMIP6 models simulate blocking frequency and persistence better than CMIP5 models in the Atlantic and Pacific and in winter and summer. This improvement is sizeable so that, for example, winter blocking frequency in the median CMIP5 model in a large Euro-Atlantic domain is underestimated by 32 % using the absolute geopotential height (AGP) blocking index, whereas the same number is 19 % for the median CMIP6 model. As for the sensitivity of simulated blocking to resolution, it is found that the resolution increase, from typically 100 km to 20 km grid spacing, in the PRIMAVERA models, which are not re-tuned at the higher resolutions, benefits the mean blocking frequency in the Atlantic in winter and summer, and in the Pacific in summer. Simulated blocking persistence, however, is not seen to improve with resolution. Our results are consistent with previous studies suggesting that resolution is one of a number of interacting factors necessary for an adequate simulation of blocking in GCMs. The improvements reported in this study hold promise for further reductions in blocking biases as model development continues.


2013 ◽  
Vol 26 (4) ◽  
pp. 1403-1417 ◽  
Author(s):  
Andrew J. Dowdy ◽  
Graham A. Mills ◽  
Bertrand Timbal ◽  
Yang Wang

Abstract The east coast of Australia is a region of the world where a particular type of extratropical cyclone, known locally as an east coast low, frequently occurs with severe consequences such as extreme rainfall, winds, and waves. The likelihood of formation of these storms is examined using an upper-tropospheric diagnostic applied to three reanalyses and three global climate models (GCMs). Strong similarities exist among the results derived from the individual reanalyses in terms of their seasonal variability (e.g., winter maxima and summer minima) and interannual variability. Results from reanalyses indicate that the threshold value used in the diagnostic method is dependent on the spatial resolution. Results obtained when applying the diagnostic to two of the three GCMs are similar to expectations given their spatial resolutions, and produce seasonal cycles similar to those from the reanalyses. Applying the methodology to simulations from these two GCMs for both current and future climate in response to increases in greenhouse gases indicates a reduction in extratropical cyclone occurrence of about 30% from the late twentieth century to the late twenty-first century for eastern Australia. In addition to the absolute risk of formation of these extratropical cyclones, spatial climatologies of occurrence are examined for the broader region surrounding eastern Australia. The influence of large-scale modes of atmospheric and oceanic variability on the occurrence of these storms in this region is also discussed.


2015 ◽  
Vol 28 (15) ◽  
pp. 6001-6018 ◽  
Author(s):  
Shannon Mason ◽  
Jennifer K. Fletcher ◽  
John M. Haynes ◽  
Charmaine Franklin ◽  
Alain Protat ◽  
...  

AbstractA deficit of shortwave cloud forcing over the Southern Ocean is persistent in many global climate models. Cloud regimes have been widely used in model evaluation studies to make a process-oriented diagnosis of cloud parameterization errors, but cloud regimes have some limitations in resolving both observed and simulated cloud behavior. A hybrid methodology is developed for identifying cloud regimes from observed and simulated cloud simultaneously.Through this methodology, 11 hybrid cloud regimes are identified in the ACCESS1.3 model for the high-latitude Southern Ocean. The hybrid cloud regimes resolve the features of observed cloud and characterize cloud errors in the model. The simulated properties of the hybrid cloud regimes, and their occurrence over the Southern Ocean and in the context of extratropical cyclones, are evaluated, and their contributions to the shortwave radiation errors are quantified.Three errors are identified: an overall deficit of cloud fraction, a tendency toward optically thin low and midtopped cloud, and an absence of a shallow frontal-type cloud at high latitudes and in the warm fronts of extratropical cyclones.To demonstrate the utility of the hybrid cloud regimes for the evaluation of changes to the model, the effects of selected changes to the model microphysics are investigated.


2013 ◽  
Vol 26 (14) ◽  
pp. 4910-4929 ◽  
Author(s):  
Sharon C. Delcambre ◽  
David J. Lorenz ◽  
Daniel J. Vimont ◽  
Jonathan E. Martin

Abstract The present study focuses on diagnosing the intermodel variability of nonzonally averaged NH winter jet stream portrayal in 17 global climate models (GCMs) from phase three of the Coupled Model Intercomparison Project (CMIP3). Relative to the reanalysis, the ensemble-mean 300-hPa Atlantic jet is too zonally extended and located too far equatorward in GCMs. The Pacific jet varies significantly between modeling groups, with large biases in the vicinity of the jet exit region that cancel in the ensemble mean. After seeking relationships between twentieth-century model wind biases and 1) the internal modes of jet variability or 2) tropical sea surface temperatures (SSTs), it is found that biases in upper-level winds are strongly related to an ENSO-like pattern in winter-mean tropical Pacific Ocean SST biases. The spatial structure of the leading modes of variability of the upper-level jet in the twentieth century is found to be accurately modeled in all 17 GCMs. Also, it is shown that Pacific model biases in the longitude of EOFs 1 and 2 are strongly linked to the modeled longitude of the Pacific jet exit, indicating that the improved characterization of the mean state of the Pacific jet may positively impact the modeled variability. This work suggests that improvements in model portrayal of the tropical Pacific mean state may significantly advance the portrayal of the mean state of the Pacific and Atlantic jets, which will consequently improve the modeled jet stream variability in the Pacific. To complement these findings, a companion paper examines the twenty-first-century GCM projections of the nonzonally averaged NH jet streams.


2021 ◽  
Vol 2 (1) ◽  
pp. 233-253
Author(s):  
David L. A. Flack ◽  
Gwendal Rivière ◽  
Ionela Musat ◽  
Romain Roehrig ◽  
Sandrine Bony ◽  
...  

Abstract. The dynamical and microphysical properties of a well-observed cyclone from the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX), called the Stalactite cyclone and corresponding to intensive observation period 6, is examined using two atmospheric components (ARPEGE-Climat 6.3 and LMDZ6A) of the global climate models CNRM-CM6-1 and IPSL-CM6A, respectively. The hindcasts are performed in “weather forecast mode”, run at approximately 150–200 km (low resolution, LR) and approximately 50 km (high resolution, HR) grid spacings, and initialised during the initiation stage of the cyclone. Cyclogenesis results from the merging of two relative vorticity maxima at low levels: one associated with a diabatic Rossby vortex (DRV) and the other initiated by baroclinic interaction with a pre-existing upper-level potential vorticity (PV) cut-off. All hindcasts produce (to some extent) a DRV. However, the second vorticity maximum is almost absent in LR hindcasts because of an underestimated upper-level PV cut-off. The evolution of the cyclone is examined via the quasi-geostrophic ω equation which separates the diabatic heating component from the dynamical one. In contrast to some previous studies, there is no change in the relative importance of diabatic heating with increased resolution. The analysis shows that LMDZ6A produces stronger diabatic heating compared to ARPEGE-Climat 6.3. Hindcasts initialised during the mature stage of the cyclone are compared with airborne remote-sensing measurements. There is an underestimation of the ice water content in the model compared to the one retrieved from radar-lidar measurements. Consistent with the increased heating rate in LMDZ6A compared to ARPEGE-Climat 6.3, the sum of liquid and ice water contents is higher in LMDZ6A than ARPEGE-Climat 6.3 and, in that sense, LMDZ6A is closer to the observations. However, LMDZ6A strongly overestimates the fraction of super-cooled liquid compared to the observations by a factor of approximately 50.


2020 ◽  
Author(s):  
Reinhard Schiemann ◽  
Panos Athanasiadis ◽  
David Barriopedro ◽  
Francisco Doblas-Reyes ◽  
Katja Lohmann ◽  
...  

<p>Global Climate Models (GCMs) are known to suffer from biases in the simulation of atmospheric blocking, and this study provides an assessment of how blocking is represented by the latest generation of GCMs. It is evaluated (i) how historical CMIP6 (Climate Model Intercomparison Project Phase 6) simulations perform compared to CMIP5 simulations, and (ii) how horizontal model resolution affects the simulation of blocking in the CMIP6-HighResMIP (PRIMAVERA) model ensemble, which is designed to address this type of question. Two blocking indices are used to evaluate the simulated mean blocking frequency and blocking persistence for the Euro-Atlantic and Pacific regions in winter and summer against the corresponding estimates from atmospheric reanalysis data. There is robust evidence that CMIP6 models simulate blocking frequency and persistence better than CMIP5 models in the Atlantic and Pacific and in winter and summer. This improvement is sizeable so that, for example, winter blocking frequency in the median CMIP5 model in a large Euro-Atlantic domain is underestimated by 32 % using the absolute geopotential height (AGP) blocking index, whereas the same number is 19 % for the median CMIP6 model. As for the sensitivity of simulated blocking to resolution, it is found that the resolution increase, from typically 100 km to 20 km grid spacing, in the PRIMAVERA models, which are not re-tuned at the higher resolutions, benefits the mean blocking frequency in the Atlantic in winter and summer, and in the Pacific in summer. Simulated blocking persistence, however, is not seen to improve with resolution. Our results are consistent with previous studies suggesting that resolution is one of a number of interacting factors necessary for an adequate simulation of blocking in GCMs. The improvements reported in this study hold promise for further reductions in blocking biases as model development continues.</p>


Sign in / Sign up

Export Citation Format

Share Document